青森県尻屋崎東方における津軽暖流の流勢指標について

佐藤晋一

Current index of Tugaru-Warm Current at east of Shiriya-Zaki, Aomori Prefecture,Japan

Shinichi Sato

はじめに

本県日本海沖合を北上する対馬暖流はその多く が津軽海峡を通過し,太平洋側に流出した後尻屋 崎沖を南下することが知られている.

津軽暖流の勢力は北緯41度26分の尻屋線におけ る各層最高水温,100m深指標水温・塩分による張 り出し位置,指標水温の最深度の平年比較により 評価している.ここでは,観測資料の整理を行い, 流勢指標等について若干の考察を行ったので報告 する.

材料及び方法

使用した資料

漁海況予報事業に係る海洋観測は1963(昭和38) 年10月に始められた(表1参照).解析資料として は,海洋観測資料(水産庁 昭和38年~60年)及 び定線海洋観測結果表(青森県水産試験場 昭和 61年~平成13年)のうち,尻屋線(北緯41度26分)

のみを使用した(図1参照).

資料の内容

0m, 50m, 100m層の最高水温は各月の観測資 料からピックアップして使用した.津軽暖流の水 塊深度は7℃等温線の最深度とした.尻屋線にお ける津軽暖流の張り出し位置は100m層における 5℃等温線の東経表示の位置とした.

表1 尻屋線における観測要目

年号	西曆年	観測測器	観測水深	塩 分	定線	の両端
• •		Den and an	Bender opt		岸側(西端)	沖側 (東端)
S.38	1963	転倒採水器	150m	塩素量	141-40E	143-30E
39	64	↓	150~500m	1	L L	146-00E
40	65		Ļ			(一部148度)
41	66					Ļ
42	67			•		
43	68				141-35E	1
44	69				↓	
45	70			塩分量		
46	71			Ļ		
47	72					
48	73				-	
49	74					146-00E
50	75					↓
51	76		500 m			144-20E
52	77		Ļ			↓ ↓
53	78					
54	79					
55	80					
56	81					
57	82					
58	83					
59	84					
60	85					
61	86					
62	87					
63	88					
H.元	89					
2	90	(CTD)				
3	91	Ļ			e.	
4	92				·	
5	93					
6	94	CTD				
7	95	↓ ↓				
8	96					
9	97		1000m			145-20E
10	98		↓ ↓			↓ ↓
11	99					
12	2000					
13	2001	l				1

また,尻屋崎東方における津軽暖流の南下流量 は500m深を無流面とする2観測点間の地衡流量の 総和とし,南向成分をプラスとして表した(単位 はSv:10⁶m³/sec).

断面積算水温は水深0~500mまでの範囲で所定 層の水温値を積分して算出することとし,東端位 置は津軽暖流の張り出し位置を参考として決定し た.

結 果

1 現行の流勢指標

現行の各指標について,以下にその概要と問 題点を挙げた.

(1) 各層最高水温

図2に0m, 50m, 100m層最高水温の月平 均値を示した.0m層では8~9月に最高, 50m層では9~10月に最高, 100m層では10月 に最高と,下層に向かってピークが少しずつ 遅く,水温値も低くなっていた.2月のデー タが少ないものの,最低水温はいずれも2~ 3月にみられた.11~4月は0~100m深まで ほとんど同じ水温で,鉛直混合期を示してい た.

この指標は観測ごとの最高値を使っている ため、1個の異常データによって結果が左右 される危険がある.

(2) 水塊深度

図3には水塊深度の月平均値を示した.こ の指標は7℃等温線の最深度をメートルで示 している.「津軽暖流の下限」として,昭和51 年から使われてきた.月平均値でみると7月 に一旦極小値をみせ,10月に最深を示してい る.

この指標も7℃を示す深度が最も深い観測 点のデータのみを使用することになるため, 異常データに左右される危険がある.

(3) 張り出し位置

図4には尻屋崎東方における津軽暖流の張 り出し位置の月平均値を示した.張り出し位 置は100m層で水温5℃以上かつ塩分が33.7psu

以上の地点の位置で,東経で示している.こ の指標は平成8年から使われてきた.月平均 値でみると東方への張り出しは,3月が最も 狭く,10月に最も東方へ張り出すことがわか る.

しかし,過去のデータをみると,これまで の観測線ではとらえられない事例が3割もみ られている。特に,11~1月は観測線が短い ためその割合が大きく,この期間は平均値が より大きいことがうかがわれる。

2 津軽暖流の張り出しモード

津軽暖流が津軽海峡から東方に張り出す際に

は、一旦東方に大きく張り出した後に時計回り に南下するパターンや下北半島に沿って沿岸近 くを南下するパターンが知られており、前者は 渦モード、後者は沿岸モードと呼ばれている. また、菱田(1987)は津軽暖流の張り出しパタ ーンを月別に示している.

尻屋線における張り出し位置について、その 度数分布を図5に示した. 度数分布は141度40分 から142度をピークとする山と143度から143度 20分をピークとする山がみられ、この二つの山 を沿岸モードと渦モードによるものと読みとる ことが可能と思われた. そこで、両者の中間に あたる東経142度30分を境目と仮定して、観測ご とにどちらのモードになるかを表2に示した.

これをみると張り出しモードの出現はおよそ 季節変化であることがわかる.月別の渦モード

	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月
1963										E	E	
1964	È	Е	E	E	U	U	U	υ	U	U	U	U
1965	U	Е	E	Е	Е	υ	U	υ	U	U	U	U
1966			E	Е	υ	U	U	U	υ	U	U	U
1967			Е	Е	υ	Е	U	υ	U	U	υ	U
1968		U	E	Е	Е	Е	U	U	U	U	U	U
1969		U	Е	Е	U	U	U	υ	U	U	U	U
1970			E	Е	E	Е	Е	E	U	U	υ	U
1971			Е	U	E	Е	υ	U	U	U	U	U
1972			υ	E	E	U	υ	υ	U	U	U	U
1973	U	U	Е	Е	Е	Е	Е	U	U	U	U	U
1974		U	Е	E	E	U	Е	U	υ	U	E	E
1975		Е	E	E	E	U	U	υ	U	U	U	U
1976			Е	E	Е	E	U	U	U	U	U	
1977		U	E	U	U	U	U	U	U	U	U	
1978		Е	E		Е	U	U	U	U	U	U	
1979			E	E	E	E	Е	υ	U	U	U	
1980			E	Е		U	U	U	U	U	U	U
1981		E	E	E	U	E	U	U	U	U	U	
1982	E	E	E	E	E	υ	υ	U	U	υ	U	U
1983	E	U	E	E	Ε	Е	U	υ	U	U	U	U
1984	E	E	E	E	E	E	Е	υ	Е	U	U	U
1985	U	Е	E	E	U	υ	U	υ	U	U	U	U
1986		U	E	E	U	U	E	U	U	U	U	U
1987	E	Е	Ε	E	U	υ	U	U	U	U	U	U
1988		U	E	E	U	U	υ	U	U	U	U	
1989	U	E	E	U	U	E	E	U	U	U	U	U
1990	U	U	E	U	υ	U	U	U	U	U	U	U
1991		E	E	U	υ	U	E	U	Е	U	U	U
1992		U	E	E	E	E	E	E	υ	U	E	
1993			E	Е	E	U	E	U	U	U	U	U
1994	E	E	E	E	E	U	U	U	υ	U	U	U
1995		υ	E	Е	U	U	U	U	U	U	U	U
1996	E	E	E	U	E	E	U	U	E	U	U	U
1997	U	E	E	U	U	E	U	U	E	U	U	Е
1998		E	E	Ε	E	E	U	U	U	U	υ	Е
1999	E	E	E	Е	U	U	U	U	U	U	υ	Е
2000	U	U	E	U	U	U	υ	υ	E	U	U	U
2001	E	E	E	Е	E	U	U	U	U	U		U

表2 津軽暖流の張り出しモード

※Eは沿岸モード、Uは渦モード.尻屋線における100m深 5℃等温線の張り出し位置が東経142.5度以西を沿岸モー ド、それ以東を渦モードとした.青森水試の観測データが ある場合は塩分(33.7psu以上)も加味した.

図 5 尻屋線における津軽暖流の張り出し位置の 度数分布

の割合でみると3月にその割合が低く,10月に 割合が高いというように,図4と同様な傾向を みせた.

しかし,1970年や92年のように8月まで沿岸 モードが持続する例もみられていた.

3 津軽暖流の南下流量

尻屋線における津軽暖流の南下流量は観測点 間での地衡流量の積算値として算出した. 観測 水深は観測開始当初から500mまでとなっていた ため、地衡流算出の際の無流面は500mとした.

沖合に向かうに従い親潮等の南下流の影響が 出てくるため、東端位置は津軽暖流の張り出し 位置を参考にして決定した.しかし、観測点間 には幅があるため厳密に津軽暖流を分離できた とはいえない状況もみられた.

このようにして算出した津軽暖流の南下流量 のデータは3~12月までの136回で,1~2月は データがなく,4月もデータ数は1と極端に少な かった.136回の全平均は2.03Svであった.月平 均値でみると最大は9月で,最小は1~3月に あると思われた(図6).

個々の計算結果をみると,南下流量として-4 ~8 Svの問にあり,0~4 Svの度数は全体の 83%を占めた(図7).

4 水温・塩分の季節変動

尻屋線における水温及び塩分の月平均鉛直断

面分布を図8及び図9に示した.

水温の月平均値を用いて行った主成分分析に よって得られた季節変動の第1~第3までの主 成分の鉛直分布を図10に示した.また,図11に は主成分の季節変動を示すスコアを示した.算 出された主成分の寄与率は第1主成分が84.5%, 第2主成分が9.4%,第3主成分が3.0%となり, 変動の大部分が第1主成分で説明できる結果と なった.また,第1及び第2主成分だけで 93.9%の寄与率となり,第3主成分以降はあま り寄与しないことがわかった.

第1主成分はほとんどが正の符号となり,こ れらの領域は水温が同時に変動することを示し ていた.振幅の大きさは津軽暖流域と思われる 東経143.5度以西の水深300m以浅を中心として おり,その時間変動は3月に最低,9月に最高 となる特徴を示していた.

第2主成分もほとんどが正の符号となった. 振幅の中心は東経142.5度及び144.5度を中心とす る水深200m以浅にみられ,津軽暖流の沿岸モー ドと渦モードの2極分化を示しているものと思 われた.主成分スコアは8月に最低,11月に最 高となった.

塩分についても季節変動の第1~第3までの 主成分の鉛直分布を図12に示した.また,図13 には主成分の季節変動を示すスコアを示した. 算出された主成分の寄与率は第1主成分が 50.2%,第2主成分が16.9%,第3主成分が 13.2%となった.また,第1~第3主成分まで の累積寄与率は80.3%となった.

第1主成分はほとんどが正の符号となった. 振幅は水温と同様に津軽暖流域と思われる東経 143.5度以西の水深300m以浅を中心としていた. その時間変動は3月に最低,11月に最高となる 特徴を示していた.

5 水温の経年変動

主成分分析によって得られた水温の経年変動 について,第1~第3までの主成分を図14に示 した.算出された主成分の寄与率は第1主成分 が37.0%,第2主成分が17.1%,第3主成分が 7.4%となり,第1~第3主成分までを合わせた 寄与率は61.5%となった.

第1主成分は符号がすべて正で,全体変動を 表していた.振幅の値は沖合表層側の東経144度 付近を中心に高くなっていた.

第2主成分は沿岸から東経143度付近までの各 層を中心とした部分の値が高くなっていた.

第3主成分は沿岸から東経142.5度付近までの 領域が正,それより沖側の東経143.5度付近まで が負の値となっていた.

経年変動の主成分スコアについて,季節変動 を除去するため主成分スコアの13カ月移動平均 を計算して図15に示した.

全体変動を示す第1主成分は1990年代の前半 及び中盤のスコアは低く,90年代の終盤にピー クをみせた。

第2主成分は80年代中盤及び90年代前半に低いスコアを示した一方,80年代後半及び90年代中盤にピークをみせた.

第3主成分は比較的短い周期で変動しており、 2000年に入ってから上昇の傾向を示していた.

県尻屋崎東方における津軽暖流の流勢指標について

145

145

· 33 (')

145

145 33.3

33.3

-33.9 H 145

33.9

145

] 8 尻屋線(41°26'N)における鉛直断面図(1~6月) 左:水温 右:塩分 (1963~2000年の平均値による)

佐藤晋一

佐藤晋一

25

. 1 (

.14

10

図14 経年変動の主成分の分布 (尻屋線 水温平年偏差)

図16には各主成分スコアの自己相関を示した. 第1主成分では2.2年(26カ月)の有意な周期が みられた. 第2主成分では有意な周期はみられ なかったが、8.0年(96カ月)や14.9年(179カ 月)程度の相関がみられた。第3主成分では1.8 年(21カ月)の有意な周期がみられ、その他に も4.5年(54カ月)の相関がみられた.

変動の持続期間は第1主成分で10カ月,第2主 成分が17ヵ月、第3主成分では5ヵ月となって おり、持続期間は第2主成分>第1主成分>第 3主成分となっていた.

6 任意の断面の積算水温

日本海の舮作線(北緯40度36.6分)では一定 断面(東経138度20分以東の水深300m以浅)内 の水温値を積分し,対馬暖流の評価指標として いる.ここでは、尻屋崎東方における津軽暖流

-22-

県尻屋崎東方における津軽暖流の流勢指標について

の断面積算水温の算出を試みた.しかし,暖流 の張り出しは前述のとおり大きな季節変化をみ せるため,水平方向は暖流の張り出しに対応し た範囲とすることにした.また,水深方向には, 図10,図12及び図14を参考にし,500m以浅と した.

以上のような範囲において算出した積算水温 を月平均値として図17に示した.これをみると, 最小値はデータの少ない冬場(1~3月)にあ る可能性が高く,最大値は10月にみられた.

7 日本海と太平洋の海況変動の関係

日本海の舮作線でとらえた対馬暖流の指標と 太平洋の尻屋崎東方における津軽暖流の指標が いくつか整理できたので,これらのラグ相関等 で両者の関係を検討した.

使用した指標は対馬暖流の①表面最高水温② 50m層最高水温③100m層最高水温④暖流流幅⑤ 水塊深度⑥北上流量⑦断面積算水温と津軽暖流 の⑧表面最高水温⑨50m層最高水温⑩100m層最 高水温⑪水塊深度⑫張り出し位置⑬南下流量⑭ 断面積算水温で,それぞれの偏差値(%表示) について解析を行った.また,ラグは太平洋側 の指標を1カ月遅らせた場合を「+1」とし,-6 ~+6の範囲にわたって計算した.

その結果,比較的高い相関を示した組み合わ せが16組みいだされた.

ラグが0カ月に相関係数の最大または極大値を みせた組み合わせは,対馬暖流の表面最高水温 と津軽暖流の表面最高水温,50m層最高水温, 100m層最高水温,対馬暖流の50m層最高水温と 津軽暖流の50m層最高水温,100m層最高水温,

図18 対馬暖流と津軽暖流の指標の偏差のラグ相関 (ラグ=0に最大または極大値がある場合)

-23-

佐藤晋一

図19 対馬暖流と津軽暖流の指標の偏差のラグ 相関(ラグ=-1に最大または極大値が ある場合)

表3 張り出し位置がとらえられなかった観測

月	12~3	4~6	7~9	10~11	計
観測回数	44	46	74	40	204
全域5℃以上			2	5	7
全域5℃以下	9	2		1	12

144度以東まで観測した場合のみ

対馬暖流の100m層最高水温と津軽暖流の50m層 最高水温,100m層最高水温,津軽暖流の南下流 量,対馬暖流の流幅と津軽暖流の100m層最高水 温などであった(図18).

また、ラグが-1カ月に相関係数の最大また は極大値をみせた組み合わせは、対馬暖流の 100m層最高水温と津軽暖流の南下流量、対馬暖 流の流幅と津軽暖流の南下流量、対馬暖流の水 塊深度と津軽暖流の南下流量、断面積算水温、 対馬暖流の北上流量と津軽暖流の100m層最高水 温、対馬暖流の断面積算水温と津軽暖流の南下 流量、断面積算水温などであった(図19).

このなかで,対馬暖流の流幅と津軽暖流の南 下流量のようにラグが+1カ月に相関係数の極 大値をみせる例や,対馬暖流の表面最高水温と 津軽暖流の100m層最高水温,対馬暖流の北上流 量と津軽暖流の100m層最高水温のようにラグ が+2カ月に相関係数の極大値をみせる例もみ られた.

考 察

1 尻屋崎東方における津軽暖流の張り出し位置 は親潮との境界として年間を通して100m深5℃ の東経位置でみているが、東経144度まで行った

表4 津軽暖流域の100 m深に現れた水温値の頻度分布

表5 100m深における津軽暖流の指標水温値の検討

	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月
A.川合 (1972) による指標水温	7	6	5	5	5	6	6	6	7	7	8	8
B.水温のモード	7~10	5	5	7	5~6	5~9	5~9	8~11	11~13	6~14	13	12
C.新指標水温	8	5	5	7	5	7	7	9	12	10	13	12
 注1: Aは川合英夫(1972)による親潮前線の100m深指標水温												

黒潮と親潮の海況学から引用

注2: Bは100m深に現れた水温値のモード(青森水試の観測による)

注3: Cの新指標水温はBを参考にして設定した

観測204回のうち、1割弱にあたる19回で水温 5℃の点がとらえられていなかった。月ごとに は、12~6月で全域5℃以下の観測値がみられ ることがあり、7~11月では全域5℃以上の観 測値がみられることがあった(**表3**).

川合(1972)は沖合親潮前線の100m深の指標 水温を月ごとに5~8℃とした.また、高杉ほ か(1993)は津軽暖流と沿岸親潮前線の100m深 指標水温として、塩分33.6~33.7psuに対応させ、 月ごとに5~9℃とした.

ここでは、尻屋崎東方の100m深に現れた水温 値の頻度を月ごとに集計(表4)し、各月のモ ードから、津軽暖流の月ごとの指標水温を検討 して表5に示した。

表5の最下段に示した津軽暖流の新指標はな お,全域5℃以下の場合には使えないが,過去 の観測結果から導き出されたものであり,津軽 暖流の張り出し位置の指標水温として有効と思 われる.

- 2 津軽暖流の張り出しモードの判定については、 水温水平分布や流れのデータ等を加味して行う べきであるが、ここでは尻屋崎の張り出し位置 のみで判別した.しかし、1992年春から夏にか けて北海道噴火湾のほたてがい貝毒の毒化が激 減し、この時期の暖流の張り出しが弱かったこ ととの対応も読みとれることから、この方法で も暖流の張り出しをよく表しているものと考え られる.
- 3 500m層を無流面とする津軽暖流の南下流量の 全平均は2.03Svとなった.これは、日本海側の 舮作崎西方における300m層を無流面とする対馬 暖流の北上流量の全平均2.61Svの9分の7に当

たる.

津軽暖流の場合は、沖に行くほど親潮や暖水 塊の影響を受けることが予想される。南下流量 は津軽暖流の張り出しの東端位置を参考に算出 しているが、その東端位置は観測点単位でしか 反映されていないので、これをそのまま津軽暖 流の南下流量とみるには注意が必要である。

無流面は,古くからのデータがそろっている として500mを採用した.水温分布図等からも津 軽暖流の下限を含んでいると考えられるため妥 当と思われるが,対馬暖流との比較に用いるに は注意が必要である.

季節変動をみると、津軽暖流の南下流量は9 月に最大を示し、最小は1~2月のデータがな いのでよくわからないが、1~3月にあるもの と思われた.対馬暖流の北上流量をみたときは 8月と12月に極大値があり、最小は3~5月で あった.両者を比較すると、津軽暖流の南下流 量には対馬暖流でみられたような12月の極大値 はみられず、最大値は津軽暖流の方が1ヵ月遅 れ、最小値は津軽暖流の方が1~2ヵ月早いこ とが特徴的であった.

4 季節変動の主成分分析の結果から、この海域 では津軽暖流による変動が最も大きいと考えら れた。

第2主成分は沿岸・沖合側の中層を中心とす る変動がみいだされた。沿岸側の中層は4月に 特徴があり、オホーツク海水の影響を示してい るものと考えられた。沖合側の中層は親潮第1 分枝の変動を示しているものと考えられた。

塩分の第1主成分についても,津軽暖流の変 動を示していると考えられた. 経年変動の主成分分析の結果では、全体変動 は親潮の変動を示していると思われるものの、 この領域に暖水塊が存在するかどうかで大きな 変動を示すと考えられた。第2主成分は沿岸・ 中層のオホーツク海水の影響を示しているもの と考えられた。第3主成分は津軽暖流の沿岸モ ードと渦モードの2つのモードの強弱を示すも のと考えられた。

津軽暖流の沿岸モードは持続期間が5カ月と 短いものの,2年近くの有意な周期がみられる ことから,津軽暖流の張り出し予測の可能性が 大きいといえる.

各主成分のスコアを加味して考えると,1990 年代前半はオホーツク海水の南下が強く,暖水 塊は90年代後半に多く存在していた.津軽暖流 の方は90年代前半に沿岸モードが卓越した年が みられたことがうかがわれた.

5 断面積算水温は南下流量をみたときのように, 津軽暖流の張り出しの東経位置を参考に算出し たが,その位置は観測点単位であったため,指 標として採用するには注意が必要である.

季節変動をみると、津軽暖流の断面積算水温 は10月に最大を示し、最小は1~3月にあるも のと思われた.日本海で対馬暖流の断面積算水 温をみたときは8月と10月に極大値があり、最 小は3~5月であった.両者を比較すると、津 軽暖流の断面積算水温には対馬暖流でみられた ような8月の極大値はみられなかったものの、 極大値は両者とも10月で一致していた.最小値 は津軽暖流の方が1~2カ月早いことが特徴的 であった.これは親潮による影響が大きいため と考えられた.

6 日本海の舮作線でとらえた対馬暖流の指標と 太平洋の尻屋崎東方における津軽暖流の指標の ラグ相関のうち、ラグが0カ月のときに比較的 相関関係の強かった組み合わせは9組あった. この中に対馬暖流と津軽暖流の表面最高水温ど おし、50m層最高水温どおし、100m層最高水温 どおしの組み合わせがみられた.同じ層の水温 どおしの変動傾向が似ているという傾向は青森 県周辺の水温変動が同時に起きているというこ とと考えることもできるが,観測データの時間 間隔が1カ月であることを考えると,1カ月以内 のタイムラグで日本海の変動が太平洋の変動に 影響を及ぼすということも考えられる.

ラグが-1カ月, すなわち津軽暖流の指標と 1カ月後の対馬暖流の指標の変化傾向に比較的 高い相関をみせた組み合わせは7組あった.こ の中では津軽暖流の南下流量と対馬暖流の100m 層最高水温,対馬暖流の流幅,水塊深度及び津 軽暖流の断面積算水温というように,津軽暖流 の南下流量と1カ月後の対馬暖流の各指標との 組み合わせが特徴的であった.

また,断面積算水温どおしの組み合わせもみ られ,予想外であった.太平洋の観測は近年, 回数が少なく,データ数の問題があるのかもし れず,さらにデータの積み重ねが必要と思われ る.

ラグが+1カ月では,対馬暖流の流幅と1カ 月後の津軽暖流の南下流量の変化傾向に比較的 高い相関がみられた.さらに+2カ月では,対 馬暖流の表面最高水温と津軽暖流の100m層最高 水温,対馬暖流の北上流量と津軽暖流の100m層 最高水温の変化傾向に比較的高い相関がみられ る例もみいだされた.津軽暖流の南下流量や 100m層最高水温の変化傾向の予測の可能性があ ると思われる.

要 約

尻屋崎東方における津軽暖流の張り出し位置は 親潮との境界として、年間を通して100m深5℃の 東経位置でみているが、尻屋崎東方の100m深に現 れた水温値の頻度を月ごとに集計し、各月のモー ドから津軽暖流の月ごとの指標水温を検討した。

津軽暖流の張り出しモードの判定については, 尻屋崎の張り出し位置のみで判断したが,この方 法でも暖流の張り出しをよく表しているものと考 えられた.

津軽暖流の南下流量の全平均は2.03Svとなった. しかし,津軽暖流の南下流量については,親潮や 暖水塊の影響を受けていることが考えられた.津 軽暖流の南下流量の季節変動は9月に最大を示し, 最小は1~3月にあるものと思われた.

季節変動の主成分分析の結果から、この海域で は津軽暖流による変動が最も大きいと考えられた. 沿岸・沖合側の中層を中心とする変動もみいださ れ、沿岸側の中層はオホーツク海水の影響を、沖 合側の中層は親潮第1分枝の変動を示しているも のと考えられた.

塩分の第1主成分についても,津軽暖流の変動 を示すと考えられた.

経年変動の主成分分析の結果では,全体変動は 親潮の変動を示していると思われるものの,この 領域に暖水塊が存在するかどうかで大きな変動を 示すと考えられた.第2主成分は沿岸・中層のオ ホーツク海水の影響を示しているものと考えられ た.第3主成分は津軽暖流の沿岸モードと渦モー ドの2つのモードの強弱を示すものと考えられた.

断面積算水温の季節変動は10月に最大を示し、 最小は1~3月にあるものと思われた.

日本海の舮作線でとらえた対馬暖流の指標と太 平洋の尻屋崎東方における津軽暖流の指標の相関 のうち,比較的相関係数の大きかった組み合わせ から,青森県周辺の水温変動が同時に起きている ということがうかがわれた.

対馬暖流の指標と1カ月後の津軽暖流の指標の

変化傾向に比較的高い相関がみられるものもあり, 津軽暖流の南下流量や100m層最高水温の変化傾向 の予測の可能性があると思われた.

謝 辞

本稿の作成にあたり,有意義な助言をいただい た独立行政法人水産総合研究センター東北区水産 研究所の伊藤進一主任研究官と清水勇吾主任研究 官に深くお礼申し上げます.

参考文献

- 菱田昌孝(1987) 津軽暖流の南下と季節変動について、水路 部研究報告,第22号,1-22.
- 川合英夫(1972) 黒潮と親潮の海況学.海洋科学基礎講座 海 洋物理 II,東海大学出版会,220-230.
- 佐藤晋一(1999) 青森県舮作崎西方における対馬暖流の地衡 流量について、青森県水産試験場事業報告 平成9年度, 179-200.
- 杉本隆成・川崎康寛(1984) 津軽暖流の季節・経年変動とその力学的解釈.沿岸海洋研究メート,22,1,1-11.
- 高杉 知・安田一郎(1993) 岩手県沿岸域における親潮水と 津軽暖流水とで形成される親潮前線の100m深指標水温.水 産海洋研究会報,57,333-344.
- 上野康弘·山崎幹雄(1987) 三陸沿岸域における津軽暖流の 季節変化.東北水研研報, 49, 111-123.