Effects of Seasonal Soil Moisture on the Growth, Yield and Fruit Quality of Apple Trees

Tadashi KATO and Haruko NARITA

Aomori Apple Experiment Station
Kuroishi, Aomori 036-03, JAPAN
目 次

I 緒 言 .. 25

II 材料と方法 .. 25
 1. 施設の概要 .. 25
 2. 供試樹及び供試土壌と処理区の構成 ... 26
 3. 管理方法 .. 26
 4. 調査項目と調査方法 ... 27

III 結 果 .. 27
 1. 各処理区の土壌水分 .. 27
 2. 葉の水ポテンシャル ... 28
 3. 植中N含有率 .. 29
 4. 樹体の生長量と新梢伸長の経過 ... 30
 5. 果実の肥大量及び収量 ... 31
 6. 果実品質 .. 31
 7. 花芽形成 ... 32

IV 考 察 .. 33

V 摘 要 .. 36

引用文献 ... 36

Summary .. 38
加藤・成田：時期別の土壌水分がリンゴ樹の生育、収量及び果実品質に及ぼす影響

I 緒 言

リンゴ園の水分管理は、これまで、夏期の乾燥時における水分補給を主目的に実施されてきた。しかし、夏期の補給灌がいによる収量増大もさることながら、生産の安定と品質の向上を図るためには、それぞれの生育ステージに視点をいただいた水分管理が必要であり、特に昨日のように果実品質の低下が商品性を決定する上で大きな比重を占めるようになると、品質向上を重視した水分管理が非常に重要になる。土壌水分とリンゴ樹の生育、収量及び果実品質等との関係について検討したこれまでの実験をみると、土壌及び立地条件に起因する現地圃場の水分環境(18,23,24)や全生育期間の水分レベルとの関係(6,13,15)あるいは夏期の灌水との関連(11,25)で検討したものは多いが、リンゴの生育ステージに視点をいただいた水分管理の実験例は少ない。本研究は、それぞれの生育時期に適合した水分管理技術を確立するために、リンゴの生育時期を前期(5・6月)、中期(7・8月)及び後期(9・10月)の3期間に区分し、それぞれの期間の土壌水分が樹体の生育、収量及び果実品質に及ぼす影響を調査したものである。なお、本報告をするに当たって、水分管理や栽培管理、調査及び分析に多大な協力をいただいた青森県りんご試験場技能技師盛清、佐藤正の両氏に深く感謝の意を表する。

II 材料と方法

1. 施設の概要

本実験は青森県りんご試験場内の降雨遮断施設を利用して実施した。降雨遮断施設は、第1図及び写真1、2に示すような装置で、その規模は総19.80m、幅5.80m、高さが最も高い中央部で4.20mである。降雨時に、降雨感知器によって雨滴を感知し、伸縮部の先端部の減少モーターが作動して伸縮部が伸び、処理区を透明なビニールシートで覆い、降雨が止むと伸縮部が縮んで、処理区への覆いが開くようになっている。

この施設の中に、処理区外あるいは隣接する処理区からの水分移動を防止するために、第2図のような総5.00m、幅3.00m、深さ0.60mのコンクリート枠（コンクリートの厚さ0.15m）が4区画構築されている。

第1図 降雨遮断施設の概略図

写真1 雨降遮断施設が開いている状態
写真2 雨降遮断施設が閉じている状態
2．供試樹及び供試土壌と処理区の構成

1979年4月、降雨遮断施設内のコンクリート柱4区画に、1区画（15m²）当たりパーク堆肥、苦土灰酸カルシウム及び砂りの組をそれぞれ20kg施用して土壌改良し、第2図に示すような栽培様式及び距離で、3年生M.9A台‘ふじ’を1区画当たり5樹、4区画で計20樹を定植した。その後、処理開始前の1981年までの3年間、各区画とも標準的な栽培管理を行った。

土壌は、地表下30cmまでが岩木山系の黒ボク土で、それ以下は砂れき層である。主要根群域（深さ0～30cm）の土壌の水分特性は第1表に示すとおりである。

1982年と1984年の2か年、生育期間を3期に区分し、前期を5・6月、中期を7・8月、また後期を9・10月として水分処理をした。処理区は、1982年が5・6月乾燥、7・8月乾燥、9・10月乾燥、さらに5・6月及び9・10月乾燥の4区、1984年が5・6月乾燥、7・8月乾燥、9・10月乾燥、それに全期間湿潤の4区で、第2表に示すような処理を行った。

<table>
<thead>
<tr>
<th>三相分布（pF1.5~2.5）</th>
<th>固相</th>
<th>液相</th>
<th>気相</th>
</tr>
</thead>
<tbody>
<tr>
<td>0～10</td>
<td>0.794</td>
<td>30.5</td>
<td>55.9</td>
</tr>
<tr>
<td>10～20</td>
<td>0.740</td>
<td>27.9</td>
<td>52.9</td>
</tr>
<tr>
<td>20～30</td>
<td>0.795</td>
<td>30.4</td>
<td>44.3</td>
</tr>
</tbody>
</table>

第2表 試験区の構成

<table>
<thead>
<tr>
<th>年</th>
<th>処理</th>
<th>生育前期</th>
<th>生育中期</th>
<th>生育後期</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>5・6月乾燥</td>
<td>乾燥</td>
<td>湿潤</td>
<td>湿潤</td>
</tr>
<tr>
<td>7・8月乾燥</td>
<td>湿潤</td>
<td>乾燥</td>
<td>湿潤</td>
<td></td>
</tr>
<tr>
<td>9・10月乾燥</td>
<td>乾燥</td>
<td>湿潤</td>
<td>乾燥</td>
<td></td>
</tr>
</tbody>
</table>

なお、1983年は、1982年の処理の影響を消去するために、各処理区とも同一管理をした。供試樹の調査日は、1982年が5月11日で1984年は5月26日であった。

3．管理方法

各処理区の土壌水分の調節は、深さ10cm、20cm及び30cmの部位に設置したテンシオメーターを毎朝9時に観測し、乾燥処理はpF2.5～2.8、湿潤処理はpF1.5～2.3に保持するよう観測した。

灌溉用水は既設の水道施設から、3,000ℓ容水槽に貯水し、散水は直径30mmの塩化ビニール製パイプに円型散水型ノズル（散水直径1.8m、散水量117ℓ/時間・ノズル）を取付けて、樹下散水した。
肥料は、10a当たり150kg, 1982年がN6kg, P₂O₅2kg, K₂O4kg相当量を4月21日に、また1984年はN15kg, P₂O₅5kg, K₂O10kg相当量を4月25日67%、6月22日に33%の割合で複合肥料をそれぞれ施用した。

地表面の管理は、毎年除草して清潔状態を維持した。

4. 調査項目と調査方法

（1）葉の水分ポテンシャル

土壌水分が樹木のストレス状態に及ぼす影響を明らかにするため、プレスチャージャンバーを用いて、葉の水ポテンシャル（以下ψと略記）を測定した。

1982年は、6月16日に時刻別のψを把握するため、各処理区から1樹を選定し、日の出前の1時から日没後の19時まで、3時間ごとに6回、ψを測定した。また、6月から10月の間、毎月中旬に1回、ψ maxとψ minを測定した。

1984年は、同一処理区内での樹による変動を明らかにするため、9月22日に乾燥処理区と湿潤処理区の供試樹5株について、ψ maxを測定した。

測定には、1樹当たり新梢中央葉3〜5枚を供試し、日の出前に測定したψをψ max、正午に測定したそれをψ minとした。

（2）葉中含水分

リンゴ樹の生育収量及び品質に及ぼす影響の強さN成分について、葉中含水分を測定した。

1982年は6月から10月までの各月の中旬に計5回、1984年が処理期間終了時の7月3日、9月8日及び10月30日の3回。各処理区の供試樹から1樹当たり8枚前後の目通りの高さの新梢中央葉を取り出し、乾燥、粉末後のフローカルダール法でNを定量した。

（3）樹体の生育量と新梢伸長の経過

1982年と1984年の2か年、収穫後の11月上旬に、全樹について、5cm以上の新梢をすべて測定し、新梢長。総新梢伸長量及び平均新梢伸長を求めた。同時に、樹高及び樹幅を測定した。

新梢伸長の経過は、1982年5月中旬に、1樹当たり10本の新梢にラベルを付け、5月21日から9月20日まで、9〜11日に間隔で測定した。

（4）果実の肥大量と収量

果実の肥大量は、生育前期、生育中期及び生後期の処理終了時を基準に、1982年は果実の横径、1984年は横径及び縦径をそれぞれ測定し、球形として果実の体積を算出し、各生育期の肥大量を求めた。

果実の測定日は、1982年が7月3日、8月30日及び10月30日、また1984年は6月30日、8月30日及び10月29日で、1樹当たり10〜15果実ラベルで調査した。

収量調査は、1982年が11月1日、1984年が11月5日に実施したが、1樹ごとに収穫して重量と果実数を調査した。

（5）果実品質

各処理区の供試樹から、平均的な重量の果実を1樹当たり10果ずつ選び、果実品質調査に供した。

供試果実は、1果当たり赤道部2.5cm以上で、マグネステーク型果実硬度計（7/16インチチップランバー）で硬度を測定した。その後、直径0.87cmのコルクボーラーで果皮を打ち抜き、アントシアニンとクロロフィルを測定した。

アントシアニンは赤色の最も濃い部分の果皮を1果当たり1片、10果で20片に対して、塩酸メタノール液（メタノール35mlに塩酸10ml加用）20ml、クロロフィルは緑色の最も濃い部分の果皮を、1果当たり2〜3片、10果で20〜30片にメタノール液15〜20mlを加え、それぞれ3時間浸漬し、抽出液をブロード光度計で吸光度（10mm×10mm×45mmのキューペット使用）で測定した。クロロフィルは、アントシアニンの場合の抽出条件に換算して表示した。

可溶性固体物含量とリンゴ酸含量の測定には、可食部の一部を家庭用ジューサーで果汁を取り、ろ紙でろ過ごして用いた。可溶性固体物含量には屈折度計を用い、リンゴ酸含量は一定量の果汁を0.1N-NaOHで滴定してリンゴ酸に換算した。

着色程度は、収穫果すべてについて、等級1（ほぼ全面に着色しているもの）から等級5（着色が薄く青実に近いもの）まで5段階に分類した。

（6）花芽形成

花芽形成率は、処理翌年の開花期間中に、1樹当たりの頂芽数、花芽数を調査し、頂芽数に対する花芽数の割合で表示した。

III 結果

1. 各処理区の土壌水分

各処理区の生育前期、生育中期及び生育後期におけるそれぞれの土壌水分張力の平均値と標準偏差を示すと、第3表のとおりである。

溝潤処理期間中は、1982年の場合、いずれの処理区も30〜100cmH₂O（pF1.5〜2.0）を示す場合が多くなかった。1984年は過湿を懸念して、1982年より幾分高い水分張力にコントロールしたため、80〜200cmH₂O（pF1.9〜2.3）の範囲内を経過することが多かった。
第3表 各生育期の土壌水分張力

<table>
<thead>
<tr>
<th>年 月</th>
<th>処理区</th>
<th>深さ (cm)</th>
<th>生育前期（5・6月）</th>
<th>生育中期（7・8月）</th>
<th>生育後期（9・10月）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5・6月 乾燥</td>
<td>0〜10</td>
<td>440±143</td>
<td>74±42</td>
<td>61±12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10〜20</td>
<td>472±117</td>
<td>66±56</td>
<td>53±11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20〜30</td>
<td>471±125</td>
<td>56±60</td>
<td>42±10</td>
<td></td>
</tr>
<tr>
<td>7・8月 乾燥</td>
<td>0〜10</td>
<td>57±19</td>
<td>352±148</td>
<td>42±24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10〜20</td>
<td>39±23</td>
<td>426±143</td>
<td>51±15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20〜30</td>
<td>47±15</td>
<td>586±228</td>
<td>48±15</td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5・6月 乾燥</td>
<td>0〜10</td>
<td>428±150</td>
<td>72±27</td>
<td>318±153</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10〜20</td>
<td>426±167</td>
<td>63±31</td>
<td>326±160</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20〜30</td>
<td>411±156</td>
<td>52±42</td>
<td>300±169</td>
<td></td>
</tr>
<tr>
<td>7・8月 乾燥</td>
<td>0〜10</td>
<td>477±115</td>
<td>185±110</td>
<td>133±41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10〜20</td>
<td>440±127</td>
<td>177±133</td>
<td>116±27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20〜30</td>
<td>385±132</td>
<td>178±122</td>
<td>119±25</td>
<td></td>
</tr>
<tr>
<td>9・10月 乾燥</td>
<td>0〜10</td>
<td>169±46</td>
<td>531±155</td>
<td>163±103</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10〜20</td>
<td>137±33</td>
<td>525±143</td>
<td>136±92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20〜30</td>
<td>126±28</td>
<td>525±165</td>
<td>123±87</td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td>0〜10</td>
<td>170±47</td>
<td>173±46</td>
<td>478±128</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10〜20</td>
<td>128±32</td>
<td>140±36</td>
<td>402±169</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20〜30</td>
<td>106±23</td>
<td>130±27</td>
<td>414±102</td>
<td></td>
</tr>
</tbody>
</table>

平均値±標準偏差。

1982年の5・6月乾燥区と5・6月及び9・10月乾燥区の生育中期、1984年の5・6月乾燥区の生育中期と7・8月乾燥区の生育後期の標準偏差が他の期間に比べて大きかったが、これらは乾燥処理から湿潤処理への切り換えの過程で、pF1.5〜2.3（30〜200cmH₂O）に達するのに1〜3日間を要したことによった。

1982年と1984年の乾燥処理期間中は、いずれの処理区とも、350〜640cmH₂O（pF2.5〜2.8）の範囲内で経過することが多かった。ただしこの年の9・10月乾燥区と5・6月及び9・10月乾燥区の生育後期の水分張力の平均値が300cmH₂O（pF2.5）程度と、他の処理区の乾燥期間のそれに比べて低く、また、標準偏差も大きかったが、これは、9月13日の台風13号によって、降雨遮断施設の伸縮部分の車輪が脱落し、降雨が侵入したためである。

2. 葉の水ポテンシャル

第4表は、1982年6月16日に各処理区からそれぞれ1

第4表 時刻別の葉の水ポテンシャル

<table>
<thead>
<tr>
<th>処理区</th>
<th>pF (深さ10〜30cm)</th>
<th>φ (Mpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5・6月乾燥</td>
<td>2.6〜2.7</td>
<td>0.22 1.34 1.47 1.28 0.85 0.31</td>
</tr>
<tr>
<td>7・8月乾燥</td>
<td>1.7〜1.8</td>
<td>0.17 1.20 1.48 1.15 0.64 0.15</td>
</tr>
<tr>
<td>9・10月乾燥</td>
<td>1.8〜2.0</td>
<td>0.17 1.20 1.48 1.23 0.66 0.19</td>
</tr>
<tr>
<td>5・6月</td>
<td>2.6〜2.7</td>
<td>0.21 1.54 1.46 1.19 0.81 0.31</td>
</tr>
</tbody>
</table>

φ測定日は1982年6月16日。
樹を選定し、葉のボテンシャルの時刻変化を測定した結果である。

日の出前の4時から日没後の19時の降雨がおよそ20cmであった。この降雨2日後は1.5MPa以上の最深値を示した。その後に次第に上昇し、日没後には約0.3〜0.4MPaと日出前の値に近づいた。

4時と8月乾燥は、5・6月乾燥区と5・6月及び9・10月乾燥区は乾燥処理、7・8月乾燥区と9・10月乾燥区は蒸発処理を受けていたが、その後の深さ10〜30cmのpH値は、5・6月乾燥区と5・6月及び9・10月乾燥区はpH2.6〜2.7、7・8月乾燥区はpH1.7〜1.8、9・10月乾燥区はpH1.8〜2.0であった。

これらの結果から、この降雨の違いがpHに影響を及ぼしたのは、日の出前の4時と朝の7時、夕方の16時と日没後の19時であり、日中の10時、13時はこの影響が認められなかった。また、降雨の影響を考慮した場合、pHの差異は、日変化からみると小さいものであった。

1982年6月から10月まで、各月の中旬に各処理区のpHを測定した結果は第3表に示すとおりで、5・6月乾燥区と9・10月乾燥区のpHは、5・6月乾燥区はpH2.6〜2.7、7・8月乾燥区はpH1.7〜1.8、9・10月乾燥区はpH1.8〜2.0であった。

第5表 時期別の葉のボテンシャル（1982）

<table>
<thead>
<tr>
<th>処理区</th>
<th>6月16日</th>
<th>7月14日</th>
<th>8月16日</th>
<th>9月18日</th>
<th>10月18日</th>
<th>6月16日</th>
<th>7月14日</th>
<th>8月16日</th>
<th>9月18日</th>
<th>10月18日</th>
</tr>
</thead>
<tbody>
<tr>
<td>5・6月乾燥</td>
<td>5.62(2.6〜2.7)</td>
<td>1.7〜1.9</td>
<td>1.7〜1.9</td>
<td>1.5〜1.7</td>
<td>1.5〜1.7</td>
<td>2.6〜2.7</td>
<td>1.7〜1.9</td>
<td>1.3〜1.6</td>
<td>2.1〜2.2</td>
<td>2.5〜2.7</td>
</tr>
<tr>
<td>7・8月乾燥</td>
<td>5.17</td>
<td>0.17</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>9・10月乾燥</td>
<td>5.17</td>
<td>0.17</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>5・6月乾燥</td>
<td>5.17</td>
<td>0.17</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>9・10月乾燥</td>
<td>5.17</td>
<td>0.17</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
</tbody>
</table>

ある。

5・6月乾燥区と9・10月乾燥区のpHを測定した結果、蒸発処理を受けていた樹（以下蒸発処理樹と記す）のpHが、乾燥処理を受けていた樹（以下乾燥処理樹と記す）に比べて高く示す場合があった。

4処理区の蒸発処理樹のpHのmaxは、5・6月乾燥区は0.22〜0.10MPaに対して、乾燥処理樹のそれは0.34〜0.17MPaを示した。また、乾燥処理樹の場合、8月のpHが0.34MPaを示したが、他の時期の0.22〜0.17MPaに比べてやや低かった。

第2表 湿潤処理樹、乾燥処理樹の葉のボテンシャル

<table>
<thead>
<tr>
<th>処理</th>
<th>供試樹番号</th>
<th>φmax(−MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>湿潤</td>
<td>Na 1</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>Na 2</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>Na 3</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>Na 4</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>Na 5</td>
<td>0.15</td>
</tr>
<tr>
<td>乾燥</td>
<td>Na 1</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>Na 2</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>Na 3</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>Na 4</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>Na 5</td>
<td>0.17</td>
</tr>
</tbody>
</table>

4処理区のpH minは、5・6月乾燥区は0.23〜0.14MPaを示したが、蒸発処理樹のpHは、蒸発処理樹と乾燥処理樹のpH minには差異が認められなかった。

第3表は処理区のpHの変動を知ることで、1984年9月22日に乾燥処理区と蒸発処理区の供試樹を迎え、各種のpH minを測定した結果である。

これによると、蒸発処理樹のφmaxは、5樹平均値で0.15MPaであったのでに対し、乾燥処理树の大樹は0.25MPaと、2樹平均値を比べて乾燥処理樹のφmaxが低かった。

また、蒸発処理樹の変動係数は4.5%であり、乾燥処理樹のそれは2.5%と、蒸発処理樹に比べて乾燥処理樹の変動係数が大きかった。

第3表 湿潤処理樹、乾燥処理樹の葉のボテンシャル

<table>
<thead>
<tr>
<th>処理</th>
<th>供試樹番号</th>
<th>φmax(−MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>湿潤</td>
<td>Na 1</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>Na 2</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>Na 3</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>Na 4</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>Na 5</td>
<td>0.15</td>
</tr>
<tr>
<td>乾燥</td>
<td>Na 1</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>Na 2</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>Na 3</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>Na 4</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>Na 5</td>
<td>0.17</td>
</tr>
</tbody>
</table>

2 1984年9月22日測定。

詳しい10〜30cmのpHは、蒸発処理樹で2.2〜2.3、乾燥処理樹で2.7〜2.8。
中N含有率が影響を受けたのは生育前期の6月10日のみで、5・6月乾燥区が他の処理区に比べて低かったが、それ以外の時期は乾燥処理によるN含有率の低下は認められなかった。

1984年の集中N含有率の推移も、1982年の場合とほぼ同様の傾向を示し、生育前期の処理終了後の7月3日が高く、生育中期の処理終了後の9月8日及び生育後期の処理終了時の10月30日には、含有率が低下した。土壌乾燥処理の影響が集中N含有率に現われたのは、生育前期の処理終了直後の7月3日で、5・6月乾燥区が他の処理区に比べて低い含有率を示したが、その他の時期は乾燥処理の影響は認められなかった。

4．樹体の生育量と新梢伸長の経過

第7表は、樹体の生育量及び樹の大きさを調査した結果である。

新梢数及び樹の大きさは、1982年及び1984年とも、処理区間に有意な差異は認められなかった。

しかし、平均新梢数は2か年とも処理区間に有意差が認められた。すなわち、1982年の場合は、5・6月乾燥区と5・6月及び9・10月乾燥区が、それぞれ23.3m, 24.2mと、7・8月乾燥区の34.6m、9・10月乾燥区の26.8mに比較して短く、生育前期の5月及び6月の乾燥処理によって新梢伸長が抑制された。1984年の平均新梢数も7・8月乾燥区及び9・10月乾燥区は湿潤区との間に差異がなかったが、5・6月乾燥区の場合は、これらの処理区に比べて有意に短かった。1982年の場合と同様、生育前期の5月及び6月の乾燥処理によって新梢伸長は抑制された。

1樹当たりの総新梢伸長量も、1982年の場合は、5・6月乾燥区と5・6月及び9・10月乾燥区がそれぞれ23.3m, 24.2mと、7・8月乾燥区の34.6m、9・10月乾燥区の26.8mに比較して短く、生育前期の5月及び6月の乾燥処理によって1樹当たりの総新梢伸長量が少なくなった。1984年の場合も、統計的に有意性はなかったものの、1樹当たりの総新梢伸長量は、7・8月乾燥区、9・10月乾燥区及び湿潤区のそれぞれ

<table>
<thead>
<tr>
<th>年</th>
<th>処理区</th>
<th>総新梢伸長長（m/樹）</th>
<th>新梢数（本）</th>
<th>新梢伸長長（cm）</th>
<th>樹の大きさ（m）</th>
<th>有意性</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>5・6月乾燥</td>
<td>23.3</td>
<td>108</td>
<td>21.4</td>
<td>2.92</td>
<td>1.83</td>
</tr>
<tr>
<td></td>
<td>7・8月乾燥</td>
<td>34.6</td>
<td>129</td>
<td>26.8</td>
<td>2.96</td>
<td>2.09</td>
</tr>
<tr>
<td></td>
<td>9・10月乾燥</td>
<td>26.8</td>
<td>110</td>
<td>24.4</td>
<td>2.92</td>
<td>1.89</td>
</tr>
<tr>
<td></td>
<td>5・6月乾燥</td>
<td>24.2</td>
<td>114</td>
<td>20.9</td>
<td>2.92</td>
<td>1.86</td>
</tr>
<tr>
<td>1984</td>
<td>5・6月乾燥</td>
<td>24.0</td>
<td>150</td>
<td>15.7</td>
<td>2.86</td>
<td>2.15</td>
</tr>
<tr>
<td></td>
<td>7・8月乾燥</td>
<td>36.4</td>
<td>189</td>
<td>19.2</td>
<td>2.94</td>
<td>2.14</td>
</tr>
<tr>
<td></td>
<td>9・10月乾燥</td>
<td>30.9</td>
<td>165</td>
<td>18.5</td>
<td>2.84</td>
<td>1.98</td>
</tr>
<tr>
<td></td>
<td>湿潤</td>
<td>33.2</td>
<td>183</td>
<td>18.3</td>
<td>2.96</td>
<td>2.19</td>
</tr>
</tbody>
</table>

有意性

* △, **はそれぞれ10%, 5%, 1%水準、異符号間は5%水準で有意差あり。
36.4 m, 30.9 m及び33.2 mに対して、5 - 6 乾燥区は24.0 mと低い値を示した。

次に、1982年の新梢伸長の経過を示すと、第5図のとおりである。

7 - 8 月乾燥区と9 - 10 月乾燥区の新梢伸長は、7 月中下旬に伸長したのに対して、5 - 6 月乾燥区と5 - 6 月及び5 - 10 月乾燥区は7 月上旬で新梢伸長が停止し、5 月及び6 月の乾燥処理によって新梢停止期が早まった。

5. 果実の肥大量及び収量

各生育期の果実肥大量を、1982年は果実の横径から、1984年は長径と総径の平均値から、果実を球形として算出すると、第8表のとおりである。

1982年の各生育期間中の果実肥大量を処理区間で比較すると、生育前期（5 - 6月）と生育中期（7 - 8月）は、5 - 6 月乾燥区が7 - 8 月乾燥区及び9 - 10月乾燥区に比べて果実の肥大量が有意に大きかった。しかし、全体的に5 - 6 月乾燥区と9 - 10月乾燥区の間には差異が認められなかった。

第8表 各生育期間中の果実肥大量

<table>
<thead>
<tr>
<th>年</th>
<th>処理区</th>
<th>生育前期 (5 - 6月)</th>
<th>生育中期 (7 - 8月)</th>
<th>生育後期 (9 - 10月)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>5 - 6月乾燥</td>
<td>32c</td>
<td>206b</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>7 - 8月乾燥</td>
<td>38a</td>
<td>245b</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>9 - 10月乾燥</td>
<td>37ab</td>
<td>236a</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>5 - 6月乾燥</td>
<td>34bc</td>
<td>227ab</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>9 - 10月乾燥</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>乾燥</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>有意性</td>
<td>*</td>
<td>*</td>
<td>N S</td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>5 - 6月乾燥</td>
<td>22</td>
<td>96b</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>7 - 8月乾燥</td>
<td>24</td>
<td>115a</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>9 - 10月乾燥</td>
<td>25</td>
<td>115a</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>湿潤</td>
<td>25</td>
<td>125a</td>
<td>130</td>
</tr>
<tr>
<td>有意性</td>
<td>△</td>
<td>*</td>
<td>N S</td>
<td></td>
</tr>
</tbody>
</table>

区に比べて果実肥大量が有意に大きかった。5 - 6月及び9 - 10月乾燥区の肥大区は7 - 8月乾燥区及び9 - 10月乾燥区に比べて低い値を示した。しかし、生育後期（9 - 10月）は処理区間に有意差が認められなかった。1984年も1982年にほぼ同様の傾向を示し、生育前期（5 - 6月）及び生育中期（7 - 8月）の肥大区は、7 - 8月乾燥区、9 - 10月乾燥区及び湿潤区の間では差異がなかったが、5 - 6月乾燥区は、他の処理区間に比べて果実の肥大区が劣った。しかし、生育後期（9 - 10月）では、処理区間に有意差が認められなかった。

1個当たり収量と1果平均重量は、第9表に示すとおりである。

1個当たり重量は、供試樹間の変動が大きく、1982年及び1984年とも、処理区間に有意差がみられたかった。しかし、1果平均重量は、1982年の場合、7 - 8月乾燥区及び9 - 10月乾燥区の平均重量がそれぞれ349 g及び344 gに対して、5 - 6月乾燥区が292 g、5 - 6月及び9 - 10月乾燥区が317 gと、前者に比べて後者の1果平均重量が有意に大きかった。果実肥大に対する5 - 6月乾燥区の影響が認められた。1984年の場合も、湿潤区の1果平均重量264 gに対して、7 - 8月乾燥区と9 - 10月乾燥区はそれぞれ256 g及び246 gと大差がなかったが、5 - 6月乾燥区のそれは227 gと低かった。

6. 果実品質

収穫時における果実の硬度、可溶性固形物含量、リンゴ酸含量、果皮のアントシアニンとクロロフィル及び着色程度は第10表に示すとおりである。

果実硬度及び可溶性固形物含量は、1982年、1984年の2か年とも処理区間に有意差がみられたかった。

リンゴ酸含量は、1984年の場合、9 - 10月乾燥区が他の処理区に比べて低い傾向にあったが、1982年の場合処理区間に有意差が認められなかった。
果皮のアントシアニン含量は、1982年の場合、1984年に比べて全体的に長く、処理期間でも差異がなかったが、1984年は、9・10月乾燥区が湿潤区に比べて有意に高かった。

果皮のクロロフィル含量は、1982年の場合、乾燥期間の長かった5・6月及び9・10月乾燥区が他の3処理区に比べて低かったが、1984年の場合は処理間でも有意差がなかった。

1984年に実施した果実の着色程度をみると、比較的着色の優れたグレード2に類似した果実割合が、湿潤区で22％に対して、9・10月乾燥区で31％と有意に高かった。

また、着色の悪いグレード5に類似された果実の割合は、湿潤区8％に対して、9・10月乾燥区が2％と少なく、生育期の9月、10月の土壌乾燥によって着色が増進された。

7. 花芽形成

第11表は、処理翌年の開花期間中に、1樹当たり頂芽数と花芽数を調査し、花芽形成率を算出した結果である。

<table>
<thead>
<tr>
<th>年 項</th>
<th>処 理 区</th>
<th>1樹当たり収量（重量(kg) 果数</th>
<th>平均重量(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>5・6月乾燥</td>
<td>12.9 45</td>
<td>292b</td>
</tr>
<tr>
<td></td>
<td>7・8月乾燥</td>
<td>10.3 32</td>
<td>348a</td>
</tr>
<tr>
<td></td>
<td>9・10月乾燥</td>
<td>10.4 31</td>
<td>344a</td>
</tr>
<tr>
<td></td>
<td>5・6月乾燥</td>
<td>10.4 33</td>
<td>317b</td>
</tr>
<tr>
<td></td>
<td>9・10月乾燥</td>
<td>10.4 33</td>
<td>317b</td>
</tr>
<tr>
<td>1984</td>
<td>5・6月乾燥</td>
<td>19.7 86</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>7・8月乾燥</td>
<td>23.0 89</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>9・10月乾燥</td>
<td>22.1 90</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>湿潤</td>
<td>23.1 89</td>
<td>264</td>
</tr>
<tr>
<td>有意性</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
</tbody>
</table>

第10表 果 実 品 質

<table>
<thead>
<tr>
<th>年 項</th>
<th>処 理 区</th>
<th>供試果実数</th>
<th>果実硬度</th>
<th>固形物(%)</th>
<th>アントシアニン</th>
<th>クロロフィル</th>
<th>着色程度(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5・6月</td>
<td>291</td>
<td>14.7</td>
<td>14.8</td>
<td>0.41</td>
<td>0.177</td>
<td>0.046a</td>
</tr>
<tr>
<td>1982</td>
<td>7・8月乾燥</td>
<td>356</td>
<td>14.5</td>
<td>15.4</td>
<td>0.46</td>
<td>0.155</td>
<td>0.047a</td>
</tr>
<tr>
<td></td>
<td>9・10月乾燥</td>
<td>351</td>
<td>14.8</td>
<td>15.0</td>
<td>0.43</td>
<td>0.154</td>
<td>0.045a</td>
</tr>
<tr>
<td></td>
<td>湿潤</td>
<td>329</td>
<td>14.8</td>
<td>15.4</td>
<td>0.45</td>
<td>0.185</td>
<td>0.038b</td>
</tr>
<tr>
<td>有意性</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
</tbody>
</table>

22％に対して、9・10月乾燥区が31％と有意に高かった。また、着色の悪いグレード5に類似された果実の割合は、湿潤区8％に対して、9・10月乾燥区が2％と少なく、生育期の9月、10月の土壌乾燥によって着色が増進された。

7. 花芽形成

第11表は、処理翌年の開花期間中に、1樹当たり頂芽数と花芽数を調査し、花芽形成率を算出した結果である。

1樹当たり頂芽数及び花芽数は、2か年とも処理期間に有意差が認められたかった。

花芽形成率は、1982年の場合、各処理区とも80％前後と全般に高く、処理期間に有意差はなかった。しかし、1984年の場合は各処理区とも花芽形成率が非常に低かったものの、処理間では湿潤区31.7％に対し、5・6月
リンゴ樹の果樹栽培は、これまで土壌の水分状態から推測してきた。しかし、リンゴ樹の種類の果樹栽培は、土壌の水分状態のみならず、気象的要因によっても影響を受ける。また、土壌マネージャーによる土壌水分の測定は、バーチャルとしての土壌水分状態を反映しているもの、根の近くの水分状態を的確にとらえているかという疑問が残る。そこで、各処理区の供試樹の果樹栽培を把握するために、これらの値を測定した。

リンゴ樹のXについては、Goode and Higgs(7)がMM104台の' Cox's Orange Pippin'について測定し、晴天の日々のXはかなりの日変化を示し、土壌水分状態が低い場合で、日の出 Mugler -0.1〜-0.2MPa、正午には-1.5〜-2.5MPaを示すことを報告しているが、本実験の時刻別のXをみても、-0.2MPaから-1.5MPaの日変化を示し、また、期間別のXにみられるように、日の出Mugler -0.1〜-0.2MPa、正午に測定したXmaxは、-1.5〜-2.0MPaを示す場合が多かった。

土壌水分とXの関係をみると、1982年6月16日に測定した時刻別のXでは、日照土壌水分の多少が多いXに反映しなかったが、朝方から夕方は土壌水分の多少が多いXに反映し、特に日の出前の4時と日没後の19時は明確であった。

また、時刻別のXにおいても、Xminには、土壌水分の多少が反映しなかったが、Xmaxはその影響を強く反映し、温湿調節剤のXは乾燥処理樹に比べて高い値を示した。

Xminに土壌水分の多少が反映したかった理由として、町田・関谷(17)が指摘するように、日射量や風速の変化など気象要因による影響と考えられ、筆者ら(10)が大型ボートに栽培したM.26クラン'スターキング・デリシャス'で測定したXにおいても、Xmaxは土壌水分の間に相関係数0.9以上の有意な関係性が得られたが、Xminとの間には、有意な相関関係は認められなかった。

各月のX測定した時間別のXmaxの中では、8月の乾燥処理樹のそれが他の期間で比べて数値低い値を示したが、それは測定時の土壌水分状態が他の期間に比べて高かったためであると考えられる。また、9月18日に測定したXmaxは処理区間で差異がみられなかったが、これは、降露遮断施設の設置により、乾燥処理区に降雨が発生して乾燥土壌が低くなくなったことによる。

1984年9月22日に、乾燥処理区と温湿調節剤の供試樹それぞれ15株についてXmaxを測定してから、5樹平均では、温湿調節剤-0.15MPaに対し、乾燥処理樹-0.25MPaと、温湿調節剤に比較して、乾燥処理樹のXmaxが低かった。しかし、これらの変動係数をみると、温湿調節剤は4.7%と低かったのに対して、乾燥処理区のそれは32.3%と高い変動係数を示した。両処理区に比べて乾燥処理区の変動係数が高かった原因は、乾燥処理区内の土壌水分分布の不均一性、各供試樹の個量やその分布の違いなどが考えられるが、明らかではなく、今後検討する。
を要する。
乾燥処理樹と溝闊処理樹のの差異は、ほとんどの場合0.2MPa以下と、の時刻変化に比較すると、非常に小さいものであったが、Drakeら(4)は「ゴールデンデリシャス」の果実品質について、トリック溝水とスプリンクラー溝水の影響を検討し、0.1〜0.2MPaの差が大きな影響を持つことを報告している。

業中N含有率に土壌乾燥処理の影響が見られたのは、1982年6月10日、1984年9月3日と、生育前期か前
期の処理終了直後で、その後の時期は土壌乾燥処理の影
響が認められなかった。

土壌乾燥は、単に作物ストレスを与えるばかりでなく、土壌養分の有効性(14)や養分吸収(21)にも影響を
与える。

業中N含有率の低下は、雑草寄生作用によってもたらされ
るが、5・6月乾燥区の生育量がほかの処理区に比べて
劣っていることから、本実験での5・6月乾燥区の業
中N含有率の低下は、土壌乾燥によるN養分の吸収量低
下と考えられる。これに対して、7・8月及び9・10月
の土壌乾燥によって業中N含有率の低下が認められなかっ
た理由としては、春期の施肥Nが生育前期に大半吸収さ
れて、春期、後期には土壌中の無機態Nレベルが低下し
ている可能性があること、さらには望月・鎌倉の実験結
果(19,20)からも類推できるように、生育が進むにつれ
て吸収されたNの新生部に対する分配率が低下し、生育
中、後期の土壌乾燥によるN吸収量の低下が新梢葉のN
含有率に反映しなかったことが考えられる。

また、この新生部へのNの分配率の高い生育前期のN
養分吸収量の低下が、新梢伸長や果実肥大に影響してい
ることも当然考えられる。

新梢葉中のN含有率が、生育が進むにつれて次第に
低下するのが一般的であるが、5・6月乾燥区の場合は、
その後の含有率の低下が緩慢であった。これは、乾燥処
理によって利用率の低かった春期の施肥Nが7月以降の
湿潤処理によって、多量に吸収利用されたものと考える。

平均新梢長は、1982年及び1984年とも5・6月乾燥区
が他の処理区に比べて短かく、1樹当たり総新梢伸長
量も5・6月乾燥区が劣る傾向を示した。また、1982年
に実施した新梢伸長の経過をみても、5・6月の土壌乾
燥によって新梢伸長停止期が早まり、新梢長も短かった。

リンゴ樹の新梢は5月中旬の開花後から生長し始め、
その後急速な生長を続け、全伸長量の大部分は6月末ま
で完了する。したがって、5月、6月以外の時期の土壌
乾燥は、リンゴ樹の新梢伸長にはほとんど影響しないのは
当然である。

ここで論議になるのは、この程度の土壌乾燥がリンゴ
樹の生育を左右するか否かであるが、熊代・富士石(15)は、
4年生マルバカイドウ梨「紅玉」を用いて、土壌湿度と
生育との関係を検討し、新梢伸長は湿度区(トリコメネー
ター示度10〜15cmHg、pH2.1〜2.3)と最も優れ、次いで
外湿溝区(トリコメネーター示度15〜35cmHg、pH2.3
〜2.7)、乾燥区(トリコメネーター示度45〜60cmHg、pH
2.8〜2.9)の順で、土壌湿度が低くなるほど生長量が顕
著に減少する結果を得ている。

Kenworthy(13)もトリコメネーター示度が7〜8cm
Hg(÷pH2.0)で灌水した区に比べて、42cmHg(÷pH2.7)
になるまで灌水しなかった区の苗木の新梢伸長が有意に
劣ったことを報告している。また、GoodeとHyrzycz
(6)もM. Ⅱ台「Laxton's Superb」8年生樹を用い、
深さ1フィートに設置されたトリコメネーター示度が、
それぞれ401cmHg(÷pH2.1), 20cmHg(÷pH2.4)及び
50cmHg(÷pH2.8)の張力で示した時に灌水する区と無灌
水区の4処理区を設けて実験を行い、土壌養分の溶出
が限らない、灌水点の低い場合に生育が著しくなることを報告
している。

これらの実験結果から判断すると、本実験で処理した
程度の土壌乾燥でも十分生育差が見られるものと考える。

時期別の土壌水分処理と1樹当たり収量は、供試樹の
変動が大きいため、2か年とも処理区間に有意差を見いだ
すことができなかった。しかし、果実肥大は、収穫時1果平均重量にのみうら
るように、7・8月及び9・10月の土壌乾燥処理による
影響は明確でなかったが、5・6月の乾燥処理は、2か年
とも収穫果の1果平均重量が小さかった。

5・6月乾燥区の収穫時における1果平均重量の低下は、
生育前期(5・6月)の土壌乾燥が果実の肥大を抑制
することによるものであるが、この結果の肥大の低下が、
中期(7・8月)の肥大差で影響した。しかし、生育中
期(7・8月)及び後期(9・10月)の場合は、本実験で処理し
た程度の土壌乾燥では肥大に対する影響が明確でなかっ
た。

果実の大きさは、1果当たりの細胞数と細胞の大きさ
によって決まる。この細胞数が決まる果肉細胞の分
裂停止期は品種や気象条件によって異なるようであるが
(15), 田村ら(24)が「スパークン」で開花後40日前後と推
定し、望月・花田(18)は「紅玉」で、6月10日には細胞
分裂は終了に近いことを認める。

これらから判断すると、5・6月の乾燥処理期間は、
細胞分裂期に相当し、生育前期の土壌乾燥が果実の細胞
分裂に影響したことも当然考えられる。

しかし、熊代と富士石(15)は土壌湿度が高いほど果実の
肥大が著しくなることを認めるものの、果実細胞数がpF
3.0を上回る水分張力で保持した果実においても、pF2.0程度の水分処理区とは果実の間で差異を認めていることから判断すると、本実験における果実水分の差は、細胞数以外の細胞間水分の差と細胞間隔の発達によると考えざるを得ない。

収穫期の果実の大きさは、6月末までの果実の発育量との間に正の相関があるとされているので（5），本実験の場合も，5・6月の水分処理による改果期の果実の大小が，収穫期の大きさを決定づけたものと考える。

一般に，土壌水分が多いと果実品質が劣ると考えられ，灌水によって果実の品質が低下するというHaller and Harding（9），田中（26），Assafら（3）の報告がある。

しかし，本実験においては，時期別の土壌水分と果実硬度，可溶性固形物含量及びリンゴ酸含量との関係は明確でなかった。

この点について，Haller and Harding，Assafらの実験では，無灌水区あるいは乾燥処理区の土壌水分の低下が著しく，Haller and Hardingの実験では，3か年中2年目は萎調点に達しており，Assafらの乾燥処理区は灌水前の深さ0～60cmの土壌水分は萎調点を下回っている。

土壌水分がどの程度まで低下した場合にリンゴの果実成分に影響を与えるかについて，熊代・建石（15）の結果をみると，5月から9月まで生育期間のほとんどを，pF2.1〜2.2に保持した灌水区に対して，pF2.3〜2.7の半灌水では，酸成分含量では差異がみられなかったものの，全糖含量や遊離酸含量とは大差なく，pF2.9程度に保持した乾燥区に比べてそれらの差が明瞭となっていった。

このことから判断すると，土壌水分が少なくとも生育阻害水分点近くまで乾燥し，しかもそれがかなり長期間持続しないかぎり，糖や酸含量に対する影響は現れ難いものと考えられ，筆者ら（11）が「スターングリッシャス」を対象に実施した灌水試験においても，果実硬度，可溶性固形物含量及びリンゴ酸含量において，灌水区と無灌水区間の明確な差異を認めていない。

果皮のアントシアニンとクロロフィルについては，1984年に比べて1982年のアントシアニン含量が低く，クロロフィル含量が高かった。これは，1982年の場合，収穫日が11月1日と，1984年の収穫日11月5日に比べて早かったことが影響されていると思われる。

1982年の場合，降雨遮断設施の故障のため，9・10月乾燥区の土壌乾燥が不十分で，収穫日も早かったため，果皮のアントシアニン含量には処理区間の差異が認められず，クロロフィル含量は乾燥期間の長かった5・6月及び9・10月乾燥区が低下した。

1984年は，1982年に比べて収穫期が遅かったため，果皮のクロロフィル含量には処理区間に有意差が認められなかった。しかし，アントシアニン含量は，灌水区に比較して9・10月乾燥区に有意に高かった。また，果皮の着色調査においても，9・10月乾燥区は灌水区に比べて着色の優れた果実が多く，9・10月の土壌乾燥によって果実の着色が増進された。

熊代・建石（15）の実験においても，灌水区（pF2.1〜2.3）に比較して，半灌水区（pF2.3〜2.7）では全糖や遊離酸含量では明確な差異が認められなかったものの，果皮の着色度は赤色が強く，黄色が弱い結果を得ている。また，相馬ら（22）も，暗渠工事のリンゴの果実品質は，暗渠工事に比べて着色度は良好であるが，果実成分には両園の間に差異を認めていないことを考えると，果実の成分に比較して着色の方が土壌水分の影響を受けやすいものと考えられる。

土壌水分や樹体の水分状態と花芽形成については，夏期に雨が多いと生長が遅まり総花芽形成が抑制されること，反対に干ばつが花芽形成を阻害したり花芽を少なくすること，さらに土壌水分ボンズシュタールが低下すると1館当たり花芽数が減少するという報告（16）がある。また，Goodeら（8）は，ミストによるリンゴ樹の水ストレスの緩和は，花芽形成を増加させることを報告している。

筆者ら（12）も，7月26日から8月21日まで27日間無降雨状態（調節期間7年）で経過した1984年の夏に，リンゴ樹の葉の水分ポテンシャルと花芽形成について検討し，干乾時のヤマトモモと翌春の開花率との間にr=0.533と有意な相関係数を得ている。

しかし，青森県における‘ふじ’の花芽分化最適期が7月上旬，中旬である（12）を考慮すると，5・6月乾燥による水ストレスの直接的影響は考えられず，今後さらに詳細な検討が必要である。

以上のように，本実験では，生育初期及び後期の土壌乾燥に比べて，生育前期のそれがリンゴ樹の育成や果実肥大に対する影響が大きく，一方，生育前期の土壌乾燥は，着色増進の面で効果的であるという結果であった。

したがって，リンゴ園の水分管理として，生育前期はできるだけ土壌水分を適度に保持し，中期は生長阻害水分点を越えない程度に，そして後期は土壌乾燥を促進させるような管理が望ましく，今後，このような土壌水分バターンの現出可能な土壌管理技術の開発が必要である。
V 摘要

1982年と1984年の2か年、降水量制限施設内に栽培したM.9A台「ふじ」(1974年4月、3年生樹栽培)を供試して、時期別の土壌水分処理が生育、収量及び品質に与える影響について検討した。

処理区は、生育期間を3期に区分し、前期を5・6月、中期を7・8月、後期を9・10月とし、1982年は5・6月乾燥、7・8月乾燥、9・10月乾燥、さらに5・6月及び9・10月乾燥の4処理区、1984年は、5・6月乾燥、7・8月乾燥、9・10月乾燥、それに全期間湿润処理の4処理区とした。

各処理区とも、乾燥処理以外の生育時期は湿润処理をしたが、湿気10cm、20cm及び30cm部位に埋設したテンシオメーターを毎朝9時に観測して、湿润処理はpF1.5～2.3、また、乾燥処理はpF2.5～2.8なるよう適宜調整した。

結果は以下のとおりである。
1. 各処理区の果実の水ポテンシャルをみると、φmaxは土壌水分状態を良く反映して、乾燥処理樹は低く、湿润処理樹は高い値を示したが、φminは土壌水分による影響が明確でなかった。また、乾燥処理区のφmaxは、湿润処理区比べて供試樹間の変動係数が大きくだった。
2. 果中N含有率は土壌乾燥処理の影響が現れたのは生育前期のみで、5・6月の土壌乾燥によってN含有率が低下したが、その他の時期は乾燥処理による影響は認められなかった。
3. 平均新梢長は、5・6月乾燥区はほかの処理区に比べて短く、1樹当たり総新梢長も同様の傾向にあり、生育前期の土壌乾燥によって緑体の生長量が抑制された。また、生育前期の土壌乾燥によって新梢伸長停止期が早まった。
4. 各生育時期の果実の肥大をみると、5・6月乾燥区はほかの処理区に比べて生育前期（5・6月）及び生育中期（7・8月）の肥大が小さかった。また、収穫時の1果平均重量も、5・6月乾燥区がほかの処理区に比べて小さく、5・6月の土壌乾燥がほかの生育時期の土壌乾燥に比べて、果実肥大に対する影響が大きかった。
5. 収穫果の果実硬度、可溶性固形物含量及びリン酸含量は、処理区間の差異が明確でなかったが、着色は9・10月乾燥区で最も、生育前期の土壌乾燥によって果色が増進された。
6. 花芽形成については、1982年は処理の影響がみられなかったが、1984年は湿润処理区に比べて乾燥処理区の翌年の開花率が低く、土壌乾燥によって花芽形成率が低下した。しかし、土壌乾燥の時期による違いは明確でなかった。

引用文献

1. 青森県りんご試験場(1985) ふじの花芽分化に関する調査. 昭和60年業務年報：54。
2. 青森県りんご試験場(1986) ふじの花芽分化に関する調査. 昭和61年業務年報：51。
5. 福島佐雄(1964) りんごの生産生態. 木村甚弥編著，りんご栽培全編：311－343. 養覧堂，東京。
10. 加藤 正・成田春蔵(1983) 春期の土壌水分がリンゴ樹に及ぼす影響. 土壌の物理性. 48:8－15。
11. 加藤 正・成田春蔵・岩谷 齊・相馬義雄(1985) かんがリンゴの収量品質に及ぼす影響. 青森りんご試報. 22:1－20。
24. 梶原盛雄・成田春蔵・加藤 正(1972) 土壌水分とリンゴ樹の生育ならびに果実品質に関する研究. 第3報土壌の乾湿と果実硬度、満定酸度および果実計画度. 銀学要旨.昭47春:74-75.
Effects of Seasonal Soil Moisture on the Growth, Yield and Fruit Quality of Apple Trees

Tadashi Kato and Haruo Narita
Aomori Apple Experiment Station
Kuroishi, Aomori, 036-03, JAPAN

Summary

In order to elucidate the effects of seasonal soil moisture on the growth and yield of apple trees as well as on the fruit quality, this experiment was conducted for a period of two years in 1982 and 1984. Cultivar used was 'Fuji' grafted on M. 9 A rootstock. Twenty three-year-old trees were planted in 1974, five in each of four concrete frames of 5m × 3m. The frames were equipped with a flexible cover which could automatically close in accordance with rainfall.

The experimental design was as follow:

<table>
<thead>
<tr>
<th>Year</th>
<th>Frame</th>
<th>Period of Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>May–Jun</td>
</tr>
<tr>
<td>1982</td>
<td>A</td>
<td>Dry</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Wet</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Wet</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Dry</td>
</tr>
<tr>
<td>1984</td>
<td>A</td>
<td>Dry</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Wet</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Wet</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Wet</td>
</tr>
</tbody>
</table>

Soil moisture was maintained at 1.5 – 2.3 and 2.5 – 2.8pF values during wet and dry treatments respectively, by watering and intercepting rain.

Results obtained are as follows.
1. Soil moisture was reflected in the maximum leaf water potential (ϕ_{max}) measured before sunrise; the values of ϕ_{max} were higher in the trees with the wet treatment than in those with the dry treatment irrespective of the periods. The minimum values measured at noon, however, were not related to the soil moisture.
2. In June, the foliage with the dry treatment was lower in nitrogen content than that with the wet treatment. In later periods, however, no differences were noticed between the treatments.
3. In the trees which received the dry treatment during May to June, shoot growth stopped earlier. As a result, the shoots on these trees were the shortest in the fall. In the trees dried at other periods, no differences were noticed in the shoot growth.

Received for publication, September 5, 1987.
4. As a result of the dry treatment during May to June, fruit growth was retarded until the end of August and thus the fruit size at harvest was smallest. The dry treatment at other periods did not affect fruit size.

5. Harvested fruits from all frames were not significantly different in firmness, soluble solid or malic acid. Although no data were obtained for fruit color in 1982, it was improved by the dry treatment during September to October in 1984.

6. In 1982, the ratios of flower bud formation ranged from 78 to 87 per cent. The differences between the combinations of treatments were not statistically significant. In 1984, the ratios were abnormally lower than normal years ranging from 15 to 32 per cent. The flower bud formation was lower in the trees with the dry treatment at any period than in those with the wet treatment for all periods.