リンゴ黒点病の発生態態と防除法に関する研究

荒井 茂光
(青森県農林総合研究センター 枠果試験場 県南果樹研究センター)

Studies on the Ecology and Control of Brooks Fruit Spot of Apple Caused by *Mycosphaerella poni* (Pass.) Lindau

Shigemitsu Arai

Kennon Fruit Tree Research Center, Apple Experiment Station, Aomori Prefectural Agriculture and Forestry Research Center
Gonohe, Sannohe, Aomori 039-1527, Japan

キーワード：リンゴ黒点病、*Mycosphaerella poni*、*Cylindrosporium poni*、病徵、発生性質、伝染源、感染、果実の感受性、共通宿主、生活環、防除、ジフェノコナゾール・マンゼブ水和剤

2006年3月23日受理
本報告は岩手大学大学院学位論文として提出された。
目次

<table>
<thead>
<tr>
<th>番号</th>
<th>項目</th>
<th>項目</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ⅰ</td>
<td>緒言</td>
<td>………………………………………………………………………………………………</td>
<td>45</td>
</tr>
<tr>
<td>Ⅱ</td>
<td>研究史</td>
<td>………………………………………………………………………………………………</td>
<td>46</td>
</tr>
<tr>
<td>Ⅲ</td>
<td>病徵および病原菌</td>
<td>………………………………………………………………………………………………</td>
<td>46</td>
</tr>
<tr>
<td>1</td>
<td>病徵</td>
<td>………………………………………………………………………………………………</td>
<td>46</td>
</tr>
<tr>
<td>1)</td>
<td>果実</td>
<td>………………………………………………………………………………………………</td>
<td>46</td>
</tr>
<tr>
<td>2)</td>
<td>業</td>
<td>………………………………………………………………………………………………</td>
<td>47</td>
</tr>
<tr>
<td>3)</td>
<td>病斑の光学顕微鏡観察</td>
<td>………………………………………………………………………………………………</td>
<td>47</td>
</tr>
<tr>
<td>4)</td>
<td>病斑部の病理解剖観察</td>
<td>………………………………………………………………………………………………</td>
<td>48</td>
</tr>
<tr>
<td>5)</td>
<td>考察</td>
<td>………………………………………………………………………………………………</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>病原菌</td>
<td>………………………………………………………………………………………………</td>
<td>49</td>
</tr>
<tr>
<td>1)</td>
<td>偽子のう胞世代</td>
<td>………………………………………………………………………………………………</td>
<td>49</td>
</tr>
<tr>
<td>2)</td>
<td>稲器世代（spermogonialstate）</td>
<td>…………………………………………………………………………………………………</td>
<td>50</td>
</tr>
<tr>
<td>3)</td>
<td>“Phoma 型分生子”世代</td>
<td>………………………………………………………………………………………………</td>
<td>51</td>
</tr>
<tr>
<td>4)</td>
<td>Cylindrosporium 型分生子世代</td>
<td>………………………………………………………………………………………………</td>
<td>52</td>
</tr>
<tr>
<td>5)</td>
<td>病原菌の分離および分離菌の病原性</td>
<td>………………………………………………………………………………………………</td>
<td>52</td>
</tr>
<tr>
<td>6)</td>
<td>考察</td>
<td>………………………………………………………………………………………………</td>
<td>55</td>
</tr>
<tr>
<td>3</td>
<td>病原菌の培養性質</td>
<td>………………………………………………………………………………………………</td>
<td>56</td>
</tr>
<tr>
<td>1)</td>
<td>培地の種類と光</td>
<td>………………………………………………………………………………………………</td>
<td>56</td>
</tr>
<tr>
<td>2)</td>
<td>温度</td>
<td>………………………………………………………………………………………………</td>
<td>58</td>
</tr>
<tr>
<td>3)</td>
<td>培地の pH</td>
<td>………………………………………………………………………………………………</td>
<td>58</td>
</tr>
<tr>
<td>4)</td>
<td>素 素 源</td>
<td>………………………………………………………………………………………………</td>
<td>58</td>
</tr>
<tr>
<td>5)</td>
<td>炭 素 源</td>
<td>………………………………………………………………………………………………</td>
<td>59</td>
</tr>
<tr>
<td>6)</td>
<td>考察</td>
<td>………………………………………………………………………………………………</td>
<td>59</td>
</tr>
<tr>
<td>Ⅳ</td>
<td>病気の発生生態</td>
<td>………………………………………………………………………………………………</td>
<td>60</td>
</tr>
<tr>
<td>1</td>
<td>偽子のう胞の成熟と子のう胞子の飛散</td>
<td>………………………………………………………………………………………………</td>
<td>60</td>
</tr>
<tr>
<td>1)</td>
<td>偽子のう胞の成熟と温度</td>
<td>………………………………………………………………………………………………</td>
<td>60</td>
</tr>
<tr>
<td>2)</td>
<td>園場における偽子のう胞の成熟過程</td>
<td>………………………………………………………………………………………………</td>
<td>61</td>
</tr>
<tr>
<td>3)</td>
<td>子のう胞子の飛散</td>
<td>………………………………………………………………………………………………</td>
<td>61</td>
</tr>
<tr>
<td>項目</td>
<td>内容</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>飛散消長</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>飛散時間</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>考察</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>子の胞子の発芽と発芽子の胞子からのCylindrosporum型分生子形成</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>果実に対する病原性</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>病原菌の宿主への侵入</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>感染と発病</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>リンゴ病種の感受性と宿主範囲</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

43
41

(4) 病原菌の形態 ... 82
(5) 交互接種試験 ... 84
(6) セイヨウナシ越冬罹病落葉からのMycosphaerella poni子の有無発散消長 87
3) 考 察 ... 88
8. 病原菌の生活環 ... 89

V 防除法 ... 91
1. 有効葉剤の検索 ... 91
2. 実用化試験 ... 92
 1) 県南果樹研究センター内圃場における試験 ... 92
 2) 農家圃場における試験 .. 95
3. 考 察 ... 95

摘 要 ... 96

引用文献 ... 100

Summary ... 103

図版説明 ... 109

図版（Plate） .. 112
I 緒

リンゴ黒点病は果実に多数の黒色小斑点を生じる病害であり、果実の外観を損ねるため、本病による販売上の損失は大きい。

わが国の本病はリンゴ栽培当初から発生していたと考えられている（青森県りんご試験場五十周年史, 1981）。三浦（1915）によれば1902年（明治35年）、本病を品種の特性として扱った岩渕による記録が初めてであるが、病害としての記録は1913年（大正2年）、青森が原真菌をCylindrosporum pani Brooks としたものが最初である。本格的な初めての研究は三浦（1915）により行われ、病原および病原菌が記載され、防除法が検討された。

黒点病菌によるリンゴ果実の感染はリンゴの落花期も非婚（5月中下旬）から7月末頃まで続くが、落花10日後頃～30日後頃に多く、青森県りんご試験場昭和29年度研究年報：同昭和30年度研究年報：同昭和31年度研究年報：同昭和33年度研究年報：同昭和34年度研究年報）したがって落花直後頃から6月初頭（落花30日後頃）までがもっとも重要な防除期とされている（りんご生産指導要領・平成16年改訂版）。

青森県においては、1930年代にボルドー液を本病の防除に有効であることが確かめられたが、本剤は落花10日後頃から落花25日後頃までの効果に、いわゆるさび（果面に散在する土砂が生じる一種の病状）を生じさせるため、落花25日後以降の散布で防除が行われた。しかし1950年代、有機農薬のファーマクス剤が本病に対し防除効果が高く、さび果の発生を助長しないことが明らかとなった。1957年から採用され、落花25日後頃以降の散布が可能になり、防除はより確実なものになった（青森県りんご試験場五十周年史, 1981）。

1980年代、黒星病にステロール誘導化薬剤（DMI剤）が導入した防除効果を示すことが明らかとなったため、青森県においては1987年からDMI剤を用いた新しい防除体系が採用された。しかし、その薬剤を使用されたDMI剤は黒点病に対して防除効果が低かったので、1988年に青森県死全域の多くのリンゴ園で黒点病が多発した（藤田ら、1989）。また1996年には南部地方で6月上旬から7月上旬までの間、降露日および降水量ともに多く、黒点病の発生に極めて好適な条件となったため、多くのリンゴ園内で本病が多発した（新谷ら、1997）。

津軽地方では近年、黒点病の発生が少ないのでDMI剤を用いた新しい防除体系が採用されているが、南部地方ではたびたび多発しているのでDMI剤を用いた新しい防除体系が実用化できない。このため、DMI剤を用いた新しい防除体系に対応した、黒点病多発地における防除法の開発が必要とされた。

本研究を遂行するにあたり弘前大学名誉教授原田幸雄博士、弘前大学農学部農学科学科教授佐野和男博士、帯広畜産大学畜産学部教授小池正徳博士、山形大学農学部教授生田信雄博士からはご指導と本稿の校閏の労を賜りました。また弘前大学名誉教授林村健三博士、岩手大学農学部教授高川善雄博士には有難いご助言と貴重な文献を賜りました。弘前大学農学部農学講座藤田隆氏には終始ご指導を賜りました。さらに青森県植物防除協会（元フラワーセンター21あおもり所）の松本幸次郎氏、青森県農林総合研究センターりんご試験場内果樹研究センター所長藤田孝二博士には本研究の開始当初から有益なご指導とご教示を賜りました。長野県果樹試験場岩波昭彦氏には長野県果樹試
穂井：リンゴ黒点病の発生生態と防除法に関する研究

研究史

リンゴ黒点病はBrooks (1908)による病原菌Cylindrosporum poni Brooksとしての記載が最初である。その後Brooks and Black (1912)は貯蔵中の果実の病斑にみられたPhoma属菌に気づき、病原菌名をCylindrosporum poni BrooksからPhoma poni Passに変更した。またWalton and Orton (1926)はリンゴ圃場において越冬落葉上で発見したMycosphaerella属菌の偽子のう葉が本菌の完全世代であることを明らかにし、Mycosphaerella poni Passと同定した。

わが国においては、三浦 (1915)は果実の発病のほか、黒葉状態、枝枯れ状態を認め、また果実からCylindrosporum poniを検出し、発病状態の果実からPhomopsis maliを検出した。腐敗果実から得たPhomopsis maliを塩浸した結果Diaporthe属菌を生じ、これを新種としてDiaporthe mali M. Miura n. sp. と同定した。その後Diaporthe mali M. MiuraをDiaporthe poni (Pass.) M. Miuraに (三浦, 1916a), さらにDiaporthe pongii (Schwein.) Miuraに訂正した (三浦, 1927)。

木村 (1938)はリンゴ圃場で越冬した落果実上にCylindrosporum 型生分生子を生じることを報告した。関口 (1966)は自然発病した果実や枝からPhylllosticta属菌を分離し、果実に対して病原性があり、また自然発病の落葉から得たPhylllosticta属菌も病原性があることから、Phylllosticta属菌が圃場において黒点病の伝染源として働いている可能性を示唆した。堀篤ら (1967)は果実の病斑部からの分離菌を塩浸したCylindrosporum 型生分生子を葉の焼菌接種によって接種し、成熟した偽子のう葉の形成を認めた。また堀篤ら (1969)およびTsuyama et al. (1973)は接種葉における偽子のう葉の形成過程の観察から本菌の生活史を偽子のう葉Cylindrosporum 型生分生子→Phoma 型分生子と推定した。

生態研究では、塚内・土橋 (1961)は落花期以降、降水量が多いほど発病が多いためを報告した。

病微および病原菌

1. 病微
2. 菌実

果実を中心としたいわゆる病斑を生じ、病斑部果実のがく側で多く果皮側で少ない。成熟果の病斑は一般に赤色品種の暗褐色～黑色、黄色品種の暗褐色～褐色であり、病斑直下的果肉は褐変しているが、この部分から腐敗することはない (Anderson, 1956; Brooks and Black, 1912; 三浦, 1915)。

近年の主要品種の病害は明らかないので、2000 ~ 2003年の4か年、三重県上三河町の農林総合研究センターりんご試験場県南農林総合研究センター (以下、県南農林総合研究センター) 内圃場で「つがる」について詳細に観察し、
また2003年に赤色品種6品種および黄色品種2品種の成熟果についてそれぞれ観察した。
a. つがる
6月下旬または7月上旬から果点（気孔）が発生した
針大の小花開花を生じ、この病斑は7月に中旬頃には
光沢のある径1mm程度の黒色の小斑点となった。陽光
面の着色部では赤色を呈していた（図版1A, B）。その後
病斑部は果実の発育に伴い成長を生じ、成熟果（9
月中下旬）の病斑は暗赤色であり、着色の劣る部分では
濃緑色であった。病斑の大きさはこの部～赤道部では
1～3mmで8mm程度もみられ、がくあ部では2mm
以下であった（図版3C、D）。病斑直下的果肉は深さ1
～2mm程度変色していた。
b. 赤色品種
紅玉（10月中下旬調査）：病斑は暗赤色～黒色であるが、
着色の劣る部分では緑色であった。病斑部の門は調査
品種のなかでももっとも深かった。病斑の大きさはこの部～
赤道部では1～3mmで8mm程度もみられ、がくあ部では2mm
以下であった（図版2A、B）。
ジョナゴールド（10月中下旬調査）：病斑は緑色～暗緑
色であった。病斑部の門は比較的深く、がくあ部で
は病斑が発育して発赤するに従って黒色に変色していた。病斑の大きさはこの部～赤道部では1～3mmで8mm
程度もみられ、がくあ部では2mm以下であった（図版2C、D）。
スターシングデリシャス（10月中下旬調査）：病斑は黒
色であるが、着色の劣る部分では暗緑色であった。病斑
部の門は浅かった。病斑の大きさはこの部～赤道部
では1～3mmで5mmを超える病斑はなかった。がく
あ部では2mm以下であった（図版2E、F）。
北牛（10月中下旬調査）：病斑は赤褐色であるが、着色
の劣る部分では濃緑色～暗緑色であった。病斑部の門は
比較的浅かった。かすかに赤色状の病斑が多く、がくあ部
では果点を中心とした黒色に変色した。病斑の大きさ
はこの部～赤道部では1～3mmで8mm程度もみられ、
がくあ部では2mm以下であった（図版2G、H）。
ふじ（11月中下旬調査）：病斑は暗褐色～黒色であるが、
着色の劣る部分では暗緑色であった。病斑部の門は比
較的浅かった。病斑の大きさはかすかに赤色状となり、がく
あ部では黒色に変色した。病斑の大きさはこの部～赤
道部では針大～3mmで5mmを超える病斑はなかった。がく
あ部では2mm以下であった（図版3A、B）。
国光（11月中下旬調査）：病斑は赤褐色～黒色であるが、
着色の劣る部分では暗緑色であった。病斑部の門は、比較
的浅かった。病斑の大きさはかすかに赤色状となり、がく
あ部では黒色に変色した。病斑の大きさはこの部～赤
道部では針大～3mmで5mmを超える病斑はなかった。がく
あ部では2mm以下であった（図版3C、D）。
c. 黄色品種
降星（10月中下旬調査）：病斑は暗緑色で、陽光面の着
色部では赤褐色を呈した。病斑部の門は比較的に浅く、
しばしば果点を中心とした黒色に変色した。病斑の大きさは
この部～赤道部では1～3mmで10mm程度もみ
られ、がくあ部では2mm以下であった（図版3E, F）。
王林（11月中下旬調査）：病斑は暗緑色で、陽光面の着色
部では暗赤色を呈した。病斑部の門は深く、がくあ部
～赤道部ではしばしばかさを訴えた状態になり黒色に変色した。
病斑の大きさはこの部～赤道部では針大～3mmで
8mm程度もみられ、がくあ部では2mm以下であった
（図版3G、H）。

2) 葉
2000～2002年の3か年、統南果樹研究センター内圃場
で「ふじ」および「つがる」で観察した結果は以下の
とおりであった。
8月上旬～下旬から1～3mm、不正形、紫褐色の斑
点を生じ、しばしば発育して大型の病跡となる。時に
褐色～暗赤褐色の壞死部を伴っていた。病葉は葉のいず
れの部分にも生じるが、葉脈に多い傾向であった。罹病
葉はやがて乾化し落葉した。罹葉では、病斑は暗褐色～
紫褐色で葉脈に近接した部位で生じていた。罹葉後、病葉
は短縮することがなく、葉脈に近接した部位で、暗褐色であっ
た。発病は9月中旬頃より果実や新梢基部の葉でみ
られた。8月下旬～9月下旬には新梢の新緑から早生葉におい
てもみられ、その後落葉期の11月中旬まで続いた（図
版4A ~ F）。
なお、「紅玉」、「ジョナゴールド」、「スターシングデリ
シャス」、「北斗」、「国光」、「陸奥」および「王林」でも
観察したが、病葉数はほんと同様であった。

3) 病斑の光学顕微鏡観察
材料および方法
a. 果実
2002年および2003年、県南果樹研究センター内圃場
でつがるおよび紅玉（台木：M.26、樹齢：6.7年)
果実発病期限の7月上旬から収穫期（つがる：9月中旬、
紅玉：10月上旬）まで10～30日間隔で採取した。病斑
部を銘柄なナイフで薄く切り取り（厚さ：0.3～1mm）、
これをトリプルプレート、酸液（トリプルプレート 0.1g、
酸度 45ml、水 55ml：Sutton et al., 1987）で染色した後、
水に封じて光学顕微鏡下で観察した。
b. 葉
2003年、県南果樹研究センター内圃場でつがる（台
木：M.26、樹齢：7年）葉を8月下旬から11月上旬まで
10～30日間隔で採取した。病斑部を5mm角に切り取り、
トリプルプレート、酸液で染色した後、光学顕微鏡下で
病原菌を観察した。またDiener（1953）の方法、すなわ
ち酸液・エタノール液（水酔酸：95％エタノール = 1：
1) で固定、70 〜 75% 乳酸液で組織片を脱色後に、アリニンブルー・ラクトフェノール液（5% アリニンブルー、水溶液、乳酸：フェノール：グリセリン = 1:1:1）で染色した後、病原菌の侵入状況も観察した。

4） 病葉部の病理解剖観察

4.1） 材料および方法

4.1.1） 生育期における果実

2003 年、県南果樹研究センター内圃場で 'つかがる'（台木：M.26、樹齢：7 年）果実を発病初期の 7 月上旬から収穫期の 9 月までに 10 〜 30 日間隔で採取した。病葉部を 3 〜 4 mm 角に切り取り、これを FAA（ホルマリン 65 ml、水酸化 2.5 ml、50% エタノール 91 ml、小野：1962）で固定した。病葉部試料を包埋材（サクラ精機、Tissu-Tek O. C. T. Compound）で包み、-30°C で凍結後、高速ミクロトーム（カールツアイス、HM400R）を用いて厚さ 20 〜 30 μm の切片を作成し、アリニンブルー・ラクトフェノール液で染色した後、水中に浸して光学顕微鏡で病原菌を観察した。また生組織の徒手切片を即時作成し、スランプによる組織のスペクラン化、プロロックサン・エタノール法によりリグニン化の検出を行った（鈴木：1962）。

b. 越冬落ち果実

2001 年 5 月、県南果樹研究センター内圃場で採取したミイラ化した 'ジョナゴールド' 越冬落ち果実（図版 7 A）の病葉部を 3 〜 4 mm 角に切り取り FAA で固定した。上記の方法で厚さ 20 〜 30 μm の切片を作成し、アリニンブルー・ラクトフェノール液で染色した後、光学顕微鏡で病原菌を観察した。また 3 〜 4 mm 角に切り取り病葉部を Diener の方法で透明にし、病葉部直下に生じた偽原始組織を観察した。

4.2） 植

2003 年 9 月、県南果樹研究センター内圃場で採取した 'つかがる' 楠から病葉部を 3 〜 4 mm 角に切り取り、これで FAA で固定した。溶媒型ミクロトームを用いて 20 〜 30 μm の切片を作成し、アリニンブルー・ラクトフェノール液で染色した後、光学顕微鏡下で病原菌を観察した。

4.3） 結果

発病初期の病葉部では表皮および果皮 5 〜 6 層、また収穫期では果肉 10 〜 20 層程度が根拠し徐々に発病していた。発病部分においては大さき 2 〜 2 μm の菌糸が認められた（図版 6 A）。発病した組織はスランプに染色されなかったが、フロログルーン・酸化反応より細胞壁が薄く赤色に染色されたので、リグニン化していると判断した。

b. 越冬落ち果実

表皮および果皮部に偽原始組織が発達し、これら部分に偽の核が生じていた（図版 7 B 〜 D）。また子座を生じ、Cylindrosporum 型分生子を形成していた（図版 6 B, C）。

c. 製

発病初期の病葉（不正形、紫褐色変色）では宿主組織が損傷し、また稀薄状組織群の表皮が乾燥していた。菌糸は宿主細組織および糸状組織の細胞間へ、希薄状組織部では 1.0 〜 15 μm、宿主組織群ではやや大きく 15 〜 20 μm であった。落葉 11 月後では、稀薄状組織群では 2 〜 4 μm、宿主細組織群で 4 〜 6 μm であり、細胞内に侵入する菌糸を示した（図版 6 D, E）。また、主として宿主経組織の表皮に稀精子（spermatogonium）が形成されて存在していた（図版 6 F）。

なお稀精子変態（spermatogenal state）については、後続の「III 〜 II. 病原菌」で詳細を述べる。
あり、再検討する必要がある。なお、Sutton et al. (1987)は黒点病の黑点病部として1〜3 mmのpurple streakを特徴とし、記載しており、本観察の結果とは一致している。

果実および葉の病斑を切り取り直接顕微鏡で観察した結果、病斑は果実においては点状（気孔）を中心として生じ、葉点から葉葉または葉葉存在し、Cylindrosporium型分生子を生じていた。また葉においては黒点病の葉部では気孔から葉葉または葉葉上にCylindrosporium型分生子を生じていた。また、葉においては葉葉点病の葉部では気孔から葉葉または葉葉上にCylindrosporium型分生子を生じており、死篭部では果実の出葉に核と核が形成し、氣孔部にCylindrosporium型分生子を生じていた。

バウス (1908)およびBailey and Black (1912)は、密置中の果実の病斑部でCylindrosporium型分生子を発見している。しかし、生育期の緑葉果実または葉においては、この分生子を検査した報告はこれまで皆無であった。Cylindrosporium型分生子が生育期の果実や葉の病斑部に生じることを明らかにしたのは本研究が初である。

病斑部の組織解剖学上、果実では病原菌の菌糸は果肉組織の細胞壁に限り観察され、果肉組織の細胞壁の収縮期においても果実から果肉細胞20層程度までにとどまり、腐敗へと進行することはなかった。越冬した落果腐実の観察では、皮皮と皮部の間に形成菌組織が発達し、仮名のう葉や分生子を生じていた。また葉では葉実の病斑部の葉葉中部は2〜30 μmであったが、葉葉層に析出し、さらに上部に至る過程組織の表皮皮には分生子を生じていた。したがって、生育初期の果実および葉では病原菌の生育は緩慢であるが、落実後の果実および葉実においては病原菌は活発に生育すると考えられる。

なお、リンゴ園場で越冬した落果腐実の病斑部にCylindrosporium型分生子を生じることはすでに明らかにされている（木村，1988）。しかし仮名のう葉の発生はこれまで越冬落果部で発見されているだけであり（Walton and Orton, 1926），越冬した落果果実の記録はみあたらず、初めての観察記録である。

2. 病 原菌

リンゴ黒点病菌は仮名のう葉世代（Walton and Orton, 1926）と2つの分生子世代、すなわちCylindrosporium poinとPhoma poin (Brooks, 1908; Brooks and Black, 1912)が明らかにされている。本段では、仮名のう葉世代、Cylindrosporium型分生子世代およびPhoma型分生子世代の生態を観察し、また病害落果上に形態子世代（sporomogonial state）を発見したので、この生態も観察した。さらに、それぞれの世代の胞子から得た分離株の形態を観察し、病原性を検討した。

1) 偽名のう葉世代

仮名のう葉世代はアメリカ合衆国でWalton and Orton (1926)により越冬した罹病落果実で初めて発見され、形態的特徴が記載された。わが国ではTsuchiya et al. (1973)は越冬した罹病落果実から子の胞子および胞子分離株を得て、生活環に関する一連の試験を行っている。しかしTsuchiya et al. の報告を含め、仮名のう葉世代の形態を詳細に記載したものはみあたらず、ここでは越冬した罹病落果実および落果実上に生じた仮名のう葉世代の形態を記述する。

(1) 越冬罹病落果実

材料および方法

県南果樹研究センター内園場で2004年5月に採集したミライフ化した‘ジョナゴールド’越冬罹病落果実（図1 A）の病斑部を切り取りFAAで固定した。病斑部試料を包埋材で包み、20〜30 μmの切片を作り、水封し、光学顕微鏡で病原菌の形態を観察した。偽名のう胞子、子の胞子および子の胞子をそれぞれ50個について大きさを計測した。

結果

越冬罹病落果実上に生じた仮名のう葉世代の形態的特徴は第1表に示した。

偽名のう胞子は果実の表皮と皮試の間隔部分に生じ、群生または単生。黒色、球形～吸球形、頂端に乳頭状の柱を有し、径68〜155 μm（平均90.3 μm）、径55〜133 μm（平均95.5 μm）であった。子の胞子は2個より末生、円筒形～楔状。垂直形、大きさ33〜53 × 8〜11 μm（平均42.5 × 8.8 μm）、8個の子の胞子を含んでいた。子の胞子は不規則形2列に並んで生じ、長径円形～楕円形。まっすぐ～やや曲渦、2細胞、幅部端部でわずかにくびれ、無色、大きさ15〜24 × 3〜4 μm（平均18.4 × 3.6 μm）であった。これら仮名のう胞子、子の胞子および子の胞子の形態的特徴はWalton and Orton (1926)によるMycosphaerella poiniの記載と一致した（図版7 B〜F）。

(2) 越冬罹病落葉

材料および方法

県南果樹研究センター内園場で1999年5月に採取した‘ふじ’越冬罹病落葉から仮名のう胞子を生じている部分の徒手切片を作り、水封し、光学顕微鏡で落葉病原菌の形態を観察した。仮名のう胞子、子の胞子および子の胞子はそれぞれ50個について大きさを計測した。

結果

越冬罹病落葉上に生じた仮名のう葉世代の形態的特徴は第1表に示した。

仮名のう胞子は葉の葉肉の表皮下に埋没して生じ、群生または単生。黑色、球形～吸球形、頂部に乳頭状の柱を有し、径63〜115 μm（平均84.6 μm）、高さ60〜108 μm
第1表 越冬罹病落果実および落葉上に生じたMycosphaerella属菌仮子のう度世代の形態的特徴

<table>
<thead>
<tr>
<th>項 目</th>
<th>本 研 究</th>
<th>M. pomi (Walton and Orton, 1926)</th>
</tr>
</thead>
<tbody>
<tr>
<td>果実仮子</td>
<td>黒色</td>
<td>黒色</td>
</tr>
<tr>
<td>形態</td>
<td>球形～卵球形</td>
<td>球形～卵球形</td>
</tr>
<tr>
<td>径 (μm)</td>
<td>68 - 155</td>
<td>63 - 115</td>
</tr>
<tr>
<td>高さ (μm)</td>
<td>55 - 133</td>
<td>60 - 108</td>
</tr>
<tr>
<td>子のう</td>
<td></td>
<td></td>
</tr>
<tr>
<td>形態</td>
<td>卵形～卵棒状</td>
<td>卵形～卵棒状</td>
</tr>
<tr>
<td>大きさ (μm)</td>
<td>33 - 53 x 8 - 11</td>
<td>36 - 57 x 8 - 12</td>
</tr>
<tr>
<td>子のう胞子</td>
<td></td>
<td></td>
</tr>
<tr>
<td>形態</td>
<td>黒色</td>
<td>黒色</td>
</tr>
<tr>
<td>大きさ (μm)</td>
<td>2 - 4</td>
<td>2 - 4</td>
</tr>
</tbody>
</table>

第2表 罹病落果2の病斑上に生じた柄胞子様体の発芽試験

<table>
<thead>
<tr>
<th>採取年月日</th>
<th>培地</th>
<th>調査柄胞子様体数 (個)</th>
<th>発芽柄胞子様体数 (個)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002.9.5</td>
<td>落葉</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>2003.1.23</td>
<td>PDA</td>
<td>50</td>
<td>0</td>
</tr>
</tbody>
</table>

2) 精子器世代 (spermatogonial state)

Mycosphaerella属菌の多くの種において、精子器世代が報告されている（Dring and Corbin, 1961; Ganapathi, 1979; Higgins, 1920; Higgins, 1929; Higgins, 1936; Kaneko and Kakishina, 2000）。2002年8月下旬、落葉間もない罹病落果の病斑上に柄胞子様体を内包する柄胞子様構造が観察され、これは可2003年7月まで認められた。この柄胞子様構造は精子器であり、内包される柄胞子様体は精子（spermatium）と考えられたので、詳細な形態を観察するとともに、柄胞子様体の発芽試験を行った。

（1）精子（spermatium）の確認

2002年9月5日および2003年1月23日、福井県研
究センター内圃場で採取した「つがる」罹病落果から柄胞子様構造を生じている部分の徒手切片を作り、この切片をスライドグラス上に滴下した滅菌水5μl中に置き、深
出した柄胞子様体を赤寒天（粉末寒天20g、蒸留水1 l）
およびジャガイモ・プドウ糖寒天（PDA：Difco）平面に
発病した後、クリーンベンチ内で通風して寒天表面を乾燥させ、いずれも20℃、暗黒下で20日間培養後、柄胞子標体の発芽の有無を調査した。

結果

罹病葉の病斑上に生じた柄胞子標体の発芽試験の結果は第2表に示した。
柄胞子標体は果実天およびPDA平板で20℃、暗黒下で20日間培養されたが、まったく発芽しなかった。このことから、柄胞子線構造は精子器であり、柄胞子標体は精子であると結論された（同版9A〜C）。

【2】形態

材料および方法

2002年1月15日、県南果樹研究センター内圃場で採取した“ふじ”葉面葉から、精子器（前述の柄胞子線構造）を生じている部分の徒手切片を作り、水で回収した後、光学顕微鏡でその形態と内部の精子（前述の柄胞子線標体）を観察した。またそれぞれ50個について大きさを計測した。

第3表 罹病葉上に形成された精子器世代の形態的特徴

<table>
<thead>
<tr>
<th>項目</th>
<th>形態的特徵</th>
</tr>
</thead>
<tbody>
<tr>
<td>精子器</td>
<td>色</td>
</tr>
<tr>
<td></td>
<td>形態</td>
</tr>
<tr>
<td></td>
<td>径（μm）</td>
</tr>
<tr>
<td></td>
<td>高さ（μm）</td>
</tr>
<tr>
<td>精子</td>
<td>色</td>
</tr>
<tr>
<td></td>
<td>形態</td>
</tr>
<tr>
<td></td>
<td>大きさ（μm）</td>
</tr>
</tbody>
</table>

*品種：ふじ。

第4表 “Phoma型分生子” 世代の形態的特徴

<table>
<thead>
<tr>
<th>項目</th>
<th>質験果実*（2）上菌面</th>
<th>Phoma pomi (Brooks and Black, 1912)</th>
</tr>
</thead>
<tbody>
<tr>
<td>“柄子殻”</td>
<td>色</td>
<td>黒色</td>
</tr>
<tr>
<td></td>
<td>形態</td>
<td>球形～卵形</td>
</tr>
<tr>
<td></td>
<td>斉</td>
<td>不定形</td>
</tr>
<tr>
<td></td>
<td>径（μm）</td>
<td>45〜126</td>
</tr>
<tr>
<td>“分生子”</td>
<td>形態</td>
<td>円筒形</td>
</tr>
<tr>
<td></td>
<td>細胞数</td>
<td>單胞</td>
</tr>
<tr>
<td></td>
<td>大ささ（μm）</td>
<td>3.5〜5×1</td>
</tr>
</tbody>
</table>

*品種：ふじ。
材料および方法

2000年1月、5℃に貯蔵した1999年産の駄果をふじ果実から、「柄子病」を生じている部分の桁を切片を作り、水に浸しして光学顕微鏡下で病原菌の形態を観察した。「柄子病」および「Phoma型分け生」はそれぞれ30個について観察した。

結果

貯蔵果実上に生じた「Phoma型分け生」の形態的特徴は第4表に示した。「柄子病」は果実の病斑部の表面に埋没して生じ、鮮生または葉生、黒色、球形～壌球形で著に不正形、頂端に孔を有し、径45～126μmであり、「Phoma型分け生」は無色、円筒形、単生、大小3.5～5.1μmであった。これらの形態的特徴はBrooks and Black（1912）によるPhoma pomiの記載に一致した（回表9D、E）、しかしこの胞子は寒天培地中（PDAおよび素寒天）でまったく発芽しなかった。またこれらの構造は形態上前述の桁器および桁子と区別できなかった。

4) Cylindrosporum型分け生世代

Cylindrosporum型分け生は貯蔵中の果実の病斑上に認められる（Brooks, 1908; Brooks and Black, 1912）。また木村（1938）は越冬した落木果実の病斑上にCylindrosporum型分け生を生じることを報告しているが、この分け生の形態、分離菌の培養性質などの肝学的記載は行っていない。ここでは、生育期の果実および葉の病斑上および越冬した落木果実の病斑上に生じるCylindrosporum型分け生の形態を記述する。

(1) 果実および葉の病斑上に生じたCylindrosporum型分け生

材料および方法

2002年9月、県南果樹研究センター内園場の「つがる」果実および葉の病斑部を3.4mm角に切り取り、それぞれに囲みを入れ分け生を懸濁させ、水封入プレパラートを作製し、光学顕微鏡下で分け生の形態を観察した。大きさはそれぞれ50個について計測した。

結果

自然発生した果実および葉の病斑上に生じたCylindrosporum型分け生の形態的特徴は第5表に示した。果実上に生じていたCylindrosporum型分け生は無色、条状～円筒形、まっすぐ～剣曲、1～5隔膜、大きさ15～78μm×1.5～3μm（平均39.1×22μm）で、また葉上に生じていたCylindrosporum型分け生は無色、条状～円筒形、まっすぐ～剣曲で、0～4隔膜、大きさ17～46μm×2.3～5μm（平均28.1×26μm）であった。したがって、この分け生の形態的特徴はBrooks and Black（1912）および三浦（1915）によるC. pomiの記載と一致した。

(2) 越冬落下果実の病斑上に生じたCylindrosporum型分け生

材料および方法

2004年6月、県南果樹研究センター内園場において越冬した「ジョナゴールド」落木果実の病斑部を3.4mm角に切り取り、滅菌水に入れ分け生を懸濁させ、水封入プレパラートを作製し、光学顕微鏡下で分け生の形態を観察した。大きさは50個について計測した。

結果

越冬落下果実の病斑上に生じたCylindrosporum型分け生の形態的特徴は第5表に示した。分け生は無色、条状～円筒形、まっすぐ～剣曲、0～4隔膜、大きさ12～54μm×1.5～3μm（平均28.9×22μm）であった。したがって、この分け生の形態的特徴はBrooks and Black（1912）および三浦（1915）によるC. pomiの記載と一致した。

5) 病原菌の分離および分離菌の病原性

(1) 分離源および分離菌

a. 果実および葉の病斑

1998年9月、「つがる」果実および葉に発生した病斑

第5表 生育期の果実、葉および越冬落下果実の病斑上に生じたCylindrosporum型分け生の形態的特徴

<table>
<thead>
<tr>
<th>病斑の形成部位</th>
<th>大きさ（μm）</th>
<th>隔膜数</th>
<th>種 考</th>
</tr>
</thead>
<tbody>
<tr>
<td>生育期の果実¹</td>
<td>–17 –8×1.5 –3</td>
<td>1 – 5</td>
<td>本研究</td>
</tr>
<tr>
<td>生育期の葉²</td>
<td>–17 –4 6 –2 –3.5</td>
<td>0 – 4</td>
<td>³</td>
</tr>
<tr>
<td>越冬落下果実³</td>
<td>–12 –54 –1.5 –3</td>
<td>0 – 4</td>
<td>³</td>
</tr>
<tr>
<td>貯蔵果実</td>
<td>–20 –50 –2 –3</td>
<td>0 – 4</td>
<td>Brooks and Black, 1912</td>
</tr>
<tr>
<td>人工培養</td>
<td>–38 –70 –3 –3.5</td>
<td>2 – 7</td>
<td>三浦, 1915</td>
</tr>
</tbody>
</table>

¹ 品種：つがる。
² 品種：ジョナゴールド。
³ 品種：ちがる。

52
第 6 表 分離菌の Cylindrosporum 型分生子の形態的特徴

<table>
<thead>
<tr>
<th>酵母</th>
<th>分離源</th>
<th>大きさ (μm)</th>
<th>隔壁数</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.12</td>
<td>果実病葉（組織分離）</td>
<td>13 - 67 × 1.5 - 3</td>
<td>(33.6 ± 2.6)</td>
<td>0 - 6</td>
</tr>
<tr>
<td>No.16</td>
<td>果実病葉（組織分離）</td>
<td>10 - 82 × 2 - 1.5</td>
<td>(37.1 ± 3.1)</td>
<td>0 - 7</td>
</tr>
</tbody>
</table>
示した。
これらの分離菌の分生子はいずれも Cylindrosporum 型、無色、糸状～円筒形、まったく菌糸を認めず、隔膜数および大きさはいずれも 0～7 隔膜、10～90 × 1.5～4.5 μm の範囲内であり、Brooks and Black (1912) および三浦 (1915) が記載した C. pumila の形態的特徴と一致した（図版 9 F）。

供試したいずれの分離菌も PDA 培地、20℃、暗黒下で、はじめ淡黄色、湿性の菌落を生じた。菌はやがて中央部に生じる灰色から黑色のフェルト状に変化した。甲子の Experimental Cultures 通り No.22 は PDA 培地で菌糸上にわずかに突き出した小柄に次々と押し出す様式（フィアロ型）で生分生子を形成した。形成された生分生子は小柄部に集合し塊状を呈した（図版 9 G）。

(3) 病 原 性

越冬落葉果実の病斑上に生じた子の胞子、生育期の果実および葉の病斑上に生じた Cylindrosporum 型分生子はいずれもこれまで観察記録がない。また越冬落葉果実の病斑上に生じた Cylindrosporum 型分生子は菌学的検討が行われていない。これらの子の胞子および分生子がリンゴ黒点病菌であることを確認するため、甲子分離菌を供試して、リンゴ果実に対する病原性を検討した。

材料および方法

いずれの分離菌も PDA 培養で生じた分生子懸濁液 (Tween20, 0.02％添加) を接種源とした。県南試験研究センター内果園の「紅玉」の無病果実に、小型噴霧器を用いて生分生子懸濁液を噴霧接種した。対照の果実には滅菌水を噴霧した。なお接種果実は自然発病を避けるため、接種約 30 日前にハトロン紙製袋で被覆し、接種直前に除袋し、接種を行った後再びハトロン紙製袋で被覆した。各区 10 枚を供し、試験期間中の落果果実は調査から除いた。

a. 越冬落葉の病斑上に生じた子の胞子懸濁液分離株 No.22

2003 年 7 月 16 日に分生子懸濁液 (5.7 × 10^6 個 ml) を噴霧接種し、10 月 10 日に発病調査した。

b. 越冬落葉果実の病斑上に生じた子の胞子懸濁液分離株 No.121

2004 年 7 月 12 日に分生子懸濁液 (6.1 × 10^6 個 ml) を噴霧接種し、9 月 13 日に発病調査した。

c. 生育期の果実病斑上に生じた Cylindrosporum 型分生子懸濁液分離株 No.82

2003 年 7 月 11 日に分生子懸濁液 (5.6 × 10^6 個 ml) を噴霧接種し、9 月 3 日に発病調査した。

d. 生育期の葉の病斑上に生じた Cylindrosporum 型分生子懸濁液分離株 No.22

2003 年 7 月 16 日に分生子懸濁液 (5.7 × 10^6 個 ml) を噴霧接種し、10 月 10 日に発病調査した。

<table>
<thead>
<tr>
<th>第 7 表</th>
<th>越冬落葉果実の胞子分離菌のリンゴ果実に対する病原性</th>
</tr>
</thead>
<tbody>
<tr>
<td>単株</td>
<td>調査果数（個）</td>
</tr>
<tr>
<td>No.22</td>
<td>6</td>
</tr>
<tr>
<td>無接種</td>
<td>10</td>
</tr>
</tbody>
</table>

2. 紅玉 果実を供試し、2003 年 7 月 16 日接種、同月 10 日発病調査。

<table>
<thead>
<tr>
<th>第 8 表</th>
<th>越冬落葉果実の胞子分離菌のリンゴ果実に対する病原性</th>
</tr>
</thead>
<tbody>
<tr>
<td>単株</td>
<td>調査果数（個）</td>
</tr>
<tr>
<td>No.121</td>
<td>10</td>
</tr>
<tr>
<td>無接種</td>
<td>10</td>
</tr>
</tbody>
</table>

2. 紅玉 果実を供試し、2004 年 7 月 12 日接種、同月 13 日発病調査。

<table>
<thead>
<tr>
<th>第 9 表</th>
<th>果実病斑菌 Cylindrosporum 型分生子胞子分離菌のリンゴ果実に対する病原性</th>
</tr>
</thead>
<tbody>
<tr>
<td>単株</td>
<td>調査果数（個）</td>
</tr>
<tr>
<td>No.82</td>
<td>10</td>
</tr>
<tr>
<td>無接種</td>
<td>10</td>
</tr>
</tbody>
</table>

2. 紅玉 果実を供試し、2003 年 7 月 11 日接種、同月 9 日発病調査。
第10表 葉上病原由来 Cylindrosporum 型分生子胞子分離菌のリンゴ果実に対する病原性

<table>
<thead>
<tr>
<th>菌株</th>
<th>発病果数（個）</th>
<th>1 果当たりの平均病斑数</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.85</td>
<td>9</td>
<td>12.1</td>
</tr>
<tr>
<td>無接種</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* 紅玉 果実を供試し、2003年7月11日に接種。同年9月3日に発病調査。

第11表 越冬落果由来 Cylindrosporum 型分生子胞子分離菌のリンゴ果実に対する病原性

<table>
<thead>
<tr>
<th>菌株</th>
<th>発病果数（個）</th>
<th>1 果当たりの平均病斑数</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.119</td>
<td>9</td>
<td>25.1</td>
</tr>
<tr>
<td>無接種</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* 紅玉 果実を供試し、2004年6月24日に接種。同年9月13日に発病調査。

生子胞子分離株 No.85
2003年7月11日に分生子懸浮液 (5.2 × 10^4 個/ ml) を噴霧接種し、9月3日に発病調査した。
c. 越冬落果果実の病変上に生じた Cylindrosporum 型分生子胞子分離株 No.119
2004年6月24日に分生子懸浮液 (5.0 × 10^4 個/ ml) を噴霧接種し、9月13日に発病調査した。

結果
分離株 No.22, No.82, No.85, No.119 および No.121 のリンゴ果実に対する病原性は第7表 - 第11 表に示した。

6) 考察
Waltion and Orton (1926) は越冬病原由来上にリンゴ黒点病原の偽のう歯世代を発見し Mycosphaerella の同定通りにした。しかしこの際においては、偽のう歯世代の形態を詳細に観察した報告はなく、そこで、国場から採取した越冬黒点病葉上に生じた偽のう歯のう歯、子、子の胞子について形態的特徴を観察し、さらに越冬黒点落果果実上においても偽のう歯のう歯を発見したので、この形態についても観察した。その結果、越冬した黒点落葉および黒点落果実上いずれに生じた偽のう歯、子、子の胞子も Waltion and Orton (1926) による M. poni の記載と一致することを確認した。さらに、越冬落葉上から得た子胞子胞子分離株 No.22 のこと
ら、Phyllosticta 型分生子が慣例において伝染源として働く可能性を示唆した。しかし本研究においては、柄子殻および Phoma 型分生子の形態はそれぞれ柄子殻、刺激とともに一致し、また Phoma 型分生子は発芽芽を有しないことから、この Phoma 型分生子世代は柄子殻世代であると結論される。

生産期の果実および葉の病斑部に生じる Cylindrosporum 型分生子は形態的特徴を Brooks and Black (1912) および三浦 (1915) による C. poni の記載とよく一致し、また果実の病斑部から得た Cylindrosporum 型分生子単胞子分離株 No.82 および葉の病斑部から得た Cylindrosporum 型分生子単胞子分離株 No.85 を接種したリンゴ果実をともに黑点病を生じた。越冬した落果果実の病斑上に生していた Cylindrosporum 型の分生子の形態的特徴も C. poni の記載と一致し、この分生子の単胞子分離株 No.119 を接種したリンゴ果実も黑点病を生じた。したがって、生産期のリノリ果実および葉の病斑上および越冬した落果果実の病斑上に生じていた Cylindrosporum 型分生子はいずれもリノリ黑点病菌と結論される。

三浦 (1915) は果実病斑から Cylindrosporum 属菌を分離し、また腐敗した果実および枝病斑から Phomopsis 属菌を分離した。腐敗した果実から分離した Phomopsis 属菌は構築により Diaporthia 属菌を生じた。三浦 (1927) はこの Diaporthia 属菌を Diaporthia pomagena (Schw.) Miura と同定した。著者は貯蔵果実を含めた多くの果実を調査したが、黒点病による果実腐敗は観察できなかった。また果実からの分離菌は Cylindrosporum 属菌であり、Phomopsis 属菌を考えられる菌は分離されなかった。さらに枝病斑は本病が毎年に多発している場所で確証できず、Diaporthia pomagena も発見できなかった。木村 (1938) は果実病斑部から得た分離菌を C. poni と同定したが、C. poni と Phomopsis 世代および Diaporthia 世代との関係については詳細が不明なもので、再検討する必要があることを指摘している。これらのことから、三浦はリンゴ黒点病菌とリンゴ幽腐病菌 (＝リンゴ黒腐病菌) Phomopsis maii を混同した可能性が否定される。

3. 病原菌の培養性質
リンゴ黒点病菌の生育と培地の種類、光、温度、培地 pH、窒素源および炭素源との関係について調査した。

1) 培地の種類と光
材料および方法
柄子のう胞子分離株 No.22 を用い、発芽直後の単生子を移植菌とした。供試培地は下記の天然培地 3 種、合成培地 3 種、合成培地 3 種の合計 7 種とした。

a）ジャガイモ・ブドウ糖添加 (PDA) : PDA (Difco) 39 g。
b）麦芽エキス寒天 : 麦芽エキス 20 g、寒天 20 g、蒸留水 11\
c）リンゴ生葉処理寒天 : リンゴ生葉 100 g、寒天 20 g、蒸留水 11

d）YpSs 寒天 (Emerson 寒天) : 酵母エキス 4 g、K2HPO4 1 g、MgSO4・7H2O 0.5 g、可溶性デンプン 15 g、寒天 20 g、蒸留水 11

e）Czapek 寒天 : MgSO4・7H2O 0.5 g、NaNO3 2 g、FeSO4・7H2O 0.01 g、K2HPO4 1 g、KCl 0.5 g、ショ糖 30 g、寒天 20 g、蒸留水 11

f）Richards 寒天 : KNO3 10g、K2HPO4 5 g、MgSO4・7H2O 2.5 g、ショ糖 50 g、寒天 20 g、蒸留水 11

g）Hopkins 寒天 : KNO3 2 g、MgSO4・7H2O 0.5 g、K2HPO4 0.1 g、ブドウ糖 10 g、寒天 20 g、蒸留水 11

これら培地は調製後、12℃、15 分間オートクレープにかけ、常温 9 cm シャレに 1ml 分注し、各区 5 枚ずつ用いた。暗黒区と照明区を設け、照明区は日白色蛍光管 (松下電器産業、FL15W) を光源として、照度 1,000 lux で連続照明を行った。寒天平板の中央部に菌を移植し、20℃で 30 日間培養後、菌叢径を測定した。実験は 2 回繰り返しを行い、結果は平均値で示した。

結 果
連続暗黒下における各種培地でのリンゴ黒点病菌の培養の特徴は第 12 表に示した。また菌叢の生育と培地の種類、光との関係は第 13 表に示した。

連続暗黒下では PDA、YpSs 寒天、Czapek 寒天、Richards 寒天および Hopkins 寒天は湿性で酵母様の菌叢を生じ、麦芽エキス寒天およびリンゴ生葉処理寒天はフェルト状の菌叢を生じた (図版 10A)。生育はいずれの供試培地でも相似で、供試培地では麦芽エキス寒天がもっとも良好で、ついて PDA、Czapek 寒天、Richards 寒天の順に良好であり、リンゴ生葉処理寒天と YpSs 寒天がやや劣り、Hopkins 寒天がもっとも劣った。

連続照明下においても、連続暗黒下と同様に PDA、YpSs 寒天、Czapek 寒天、Richards 寒天および Hopkins 寒天は湿性で酵母様の菌叢を呈し、麦芽エキス寒天およびリンゴ生葉処理寒天はフェルト状の菌叢を生じた。菌叢生育は連続照明下でも麦芽エキス寒天がもっとも良好で、ついて PDA が良好であった。PDA、Czapek 寒天、Richards 寒天および Hopkins 寒天は連続暗黒区が連続照明区に菌叢生育が遅かったが、YpSs 寒天、麦芽エキス寒天およびリンゴ生葉処理寒天は連続暗黒区と連続照明区がほぼ同であった。
第12表 連続暗黒下における各種寒天培地でのリンゴ黒点菌（単子のう胞子分離株No.22）の培養的特徴

<table>
<thead>
<tr>
<th>培地</th>
<th>菌糸の色</th>
<th>菌糸の特徴</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDA</td>
<td>light orange～greyish orange</td>
<td>円形、湿性で酵母様に生育。中核部が盛り上がりしわがある</td>
</tr>
<tr>
<td>麦芽エキス寒天</td>
<td>pale grey～greenish grey</td>
<td>円形、フェルト状</td>
</tr>
<tr>
<td>リンゴ生葉煮汁寒天</td>
<td>brownish orange～greyish brown</td>
<td>不正円形、フェルト状</td>
</tr>
<tr>
<td>YpSs寒天</td>
<td>mandarin orange～caramel</td>
<td>不正円形、湿性で酵母様に生育。中核部がわずかに盛り上がりしわがある</td>
</tr>
<tr>
<td>Czapek寒天</td>
<td>orange</td>
<td>不正円形、湿性で酵母様に生育。中核部がわずかに盛り上がりしわがある</td>
</tr>
<tr>
<td>Richards寒天</td>
<td>orange</td>
<td>不正円形、湿性で酵母様に生育。中核部がわずかに盛り上がりしわがある</td>
</tr>
<tr>
<td>Hopkins寒天</td>
<td>orange</td>
<td>不正円形、湿性で酵母様に生育。中核部がわずかに盛り上がりしわがある</td>
</tr>
</tbody>
</table>

色名はMethuen Handbook of Colour（Kornerup and Wanscher, 1978）による。

第13表 各種寒天平面におけるリンゴ黒点菌（単子のう胞子分離株No.22）の菌叢直径

<table>
<thead>
<tr>
<th>培地</th>
<th>菌叢直径（mm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDA</td>
<td>28.1 22.9</td>
</tr>
<tr>
<td>麦芽エキス寒天</td>
<td>32.3 35.2</td>
</tr>
<tr>
<td>リンゴ生葉煮汁寒天</td>
<td>19.2 20.2</td>
</tr>
<tr>
<td>YpSs寒天</td>
<td>19.2 18.7</td>
</tr>
<tr>
<td>Czapek寒天</td>
<td>21.2 17.8</td>
</tr>
<tr>
<td>Richards寒天</td>
<td>20.7 14.1</td>
</tr>
<tr>
<td>Hopkins寒天</td>
<td>18.3 14.8</td>
</tr>
</tbody>
</table>

連続暗黒、連続照明

20℃で30日間培養。
光源：白色蛍光灯、照度：1,000 lux（連続照明）。

57 -
第14表 PDA平面におけるリンゴ黒点病菌（単子のう胞子分離株No.22）の菌叢生育と温度との関係

<table>
<thead>
<tr>
<th>温度（℃）</th>
<th>菌叢直径（mm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.7</td>
</tr>
<tr>
<td>5</td>
<td>2.7</td>
</tr>
<tr>
<td>10</td>
<td>9.3</td>
</tr>
<tr>
<td>15</td>
<td>16.6</td>
</tr>
<tr>
<td>20</td>
<td>29.4</td>
</tr>
<tr>
<td>25</td>
<td>33.4</td>
</tr>
<tr>
<td>30</td>
<td>18.3</td>
</tr>
<tr>
<td>35</td>
<td>0.0</td>
</tr>
</tbody>
</table>

2 暗黒下で30日間培養。

第15表 PDA平面におけるリンゴ黒点病菌（単子のう胞子分離株No.22）の菌叢生育とpHとの関係

<table>
<thead>
<tr>
<th>培地pH値</th>
<th>菌叢直径（mm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>27.0</td>
</tr>
<tr>
<td>4.9</td>
<td>30.6</td>
</tr>
<tr>
<td>5.8</td>
<td>30.9</td>
</tr>
<tr>
<td>6.9</td>
<td>31.8</td>
</tr>
<tr>
<td>8.2</td>
<td>39.0</td>
</tr>
<tr>
<td>9.2</td>
<td>26.1</td>
</tr>
<tr>
<td>9.6</td>
<td>21.7</td>
</tr>
</tbody>
</table>

2 20℃、暗黒下で30日間培養。

2）温度

材料および方法

供試菌は単子のう胞子分離株No.22で、培地はPDA平面（径9 cmシャーレに16ml分注）を含む5枚用いた。実験平面中央に発芽直後の単分生子を移植し、0℃から35℃までの7段階の温度下（いずれも連続暗黒）で30日間培養後、菌叢直径を測定した。実験は2回繰り返して行い、結果は平均値で示した。

結果

菌叢生育と温度との関係は第14表に示した。菌叢は0〜30℃で生育し、35℃では生育しなかった。最適温度は20〜25℃であった。35℃区のシャーレをその後20℃に移し15日間培養したが、生育はまったくみられなかった。

3）培地のpH

材料および方法

単子のう胞子分離株No.22を供試した。PDAをオートクレープで滅菌し、1 N HClおよび1 N NaOHでpHを調整した後、径9 cmシャーレに16 ml分注し、各5枚のシャーレを用いた。発芽平面上中央に発芽直後の単分生子を移植し、20℃、暗黒下で30日間培養後、菌叢直径を測定しその平均値で示した。

結果

菌叢生育と培地のpHとの関係は第15表に示した。菌叢はpH4.1〜9.6のすべての区で生育した。生育したpH6.9〜8.2の酸性域から塩基性域までの広いpH域で比較的良く、pH4.1の酸性域およびpH9.2以上の塩基性域では劣った。

4）窒素源

材料および方法

単子のう胞子分離株No.22を用い、発芽直後の単分生子を移植源とした。基本培地としてRichards寒天用を用い、窒素源を各種の窒素化合物、すなわち無機窒素化合物のKNO₃、NaNO₃、NH₄NO₃、(NH₄)₂SO₄、(NH₄)₂HPO₄、NH₄Clおよび有機窒素化合物の尿素、L-asparagine、L-alanine、L-cysteine、L-leucine、L-valine、L-tyrosine、
第16表 実験用を使ったRichards寒天平面上におけるリンゴ黒点病菌（単子のとう胞子分離株No.22）の酸酵生育

<table>
<thead>
<tr>
<th>素 素 化 合 物</th>
<th>培養前の培地のpH</th>
<th>酸酵直径（mm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>無機素化合物</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNO₃</td>
<td>4.5</td>
<td>15.6</td>
</tr>
<tr>
<td>NaNO₃</td>
<td>4.5</td>
<td>16.3</td>
</tr>
<tr>
<td>NH₄NO₃</td>
<td>4.5</td>
<td>17.3</td>
</tr>
<tr>
<td>(NH₄)₂SO₄</td>
<td>4.5</td>
<td>16.0</td>
</tr>
<tr>
<td>(NH₄)₂HPO₄</td>
<td>6.5</td>
<td>19.2</td>
</tr>
<tr>
<td>NH₄Cl</td>
<td>4.4</td>
<td>13.6</td>
</tr>
<tr>
<td>有機素化合物</td>
<td></td>
<td></td>
</tr>
<tr>
<td>尿素</td>
<td>6.5</td>
<td>14.9</td>
</tr>
<tr>
<td>L-asparagine</td>
<td>4.7</td>
<td>24.0</td>
</tr>
<tr>
<td>L-alanine</td>
<td>4.8</td>
<td>27.4</td>
</tr>
<tr>
<td>L-cystine</td>
<td>4.3</td>
<td>2.5</td>
</tr>
<tr>
<td>L-leucine</td>
<td>4.8</td>
<td>17.5</td>
</tr>
<tr>
<td>L-valine</td>
<td>4.8</td>
<td>20.1</td>
</tr>
<tr>
<td>L-tyrosine</td>
<td>4.7</td>
<td>20.5</td>
</tr>
<tr>
<td>L-glutamine</td>
<td>4.8</td>
<td>23.5</td>
</tr>
</tbody>
</table>

20℃、暗黒下で30日間培養。

L-glutamineで置き換える、いずれも塩地1日にに素素250mgと等量になるように用いた。

これらの培地は調査後、121℃、15分間オートクレーブにかけ、径9cmシャーレに16ml分注し、各5枚のシャー
レを用いた。寒天平面の中央部に菌を移植し、20℃、暗
黒下で30日間培養後、酸酵直径を測定した。実験を2回
繰り返して行い、結果は平均値で示した。

なお、各区の培養開始前のpHは14表のとおりである。

結 果

酸酵生育と環境化合物との関係は第16表に示した。

酸酵生育は有機素化合物ではL-asparagine、
L-alanineおよびL-glutamineで良好であり、ついでL-valine、
L-tyrosineで良好であった。尿素およびL-leucineで劣り、
L-cystineで著しく劣った。無機素化合物では有機素
化合物に比べて総じて劣り、尿素およびL-leucine同程度
であった。

5) 炭素 源

材料および方法

単子のとう胞子分離株No.22を用い、発芽直後の含有
子を移植源とした。基本培地（Richards寒天）の炭
素源を各種の炭化合物、すなわち单糖類のfructose、
galactose、glucose、mannose、二糖類のlactose、maltose、
sucrose、多糖類のsaccharide starchおよび多価アルコール
のmannitolで置き換える、いずれも基本培地のsucrose 5％
と等量になるように用いた。

これら培地は調整後、121℃、15分間オートクレーブ
にかけ、径9cmシャーレに16ml分注し、各5枚のシャー
レを用いた。寒天平面の中央部に菌を移植し、20℃、暗
黒下で30日間培養後、酸酵直径を測定した。実験を2回
繰り返して行い、結果は平均値で示した。

なお、各区の培養開始前のpHは第17表のとおりである。

6) 考 察

リンゴ黒点病菌はPDA、YpSs寒天、Czapek寒天、
Richards寒天およびHopkins寒天で、照葉、寒天条件
のいずれにおいても、酸酵が見られ、酵母様に生育を
生じた。一方、麦芽エキス寒天およびリンゴ生
葉浸汁寒天で、フェルト状を呈し酸酵生育が旺盛であっ
た。

培地の種類と酸酵生育との関係をみると、PDA、
Czapek寒天、Richards寒天およびHopkins寒天では連
続暗黒下が連続照葉を呈し酸酵直径が著しかったが、YpSs寒
第17表 炭素源を変えたRichards寒天平面におけるリンゴ黒点病菌（單子のう胞子分離株No.22）の南藻生存

<table>
<thead>
<tr>
<th>炭素化合物</th>
<th>培養前のpH</th>
<th>南藻直径（mm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>葡萄糖</td>
<td>4.3</td>
<td>18.1</td>
</tr>
<tr>
<td>阿洛糖</td>
<td>4.5</td>
<td>18.2</td>
</tr>
<tr>
<td>葡萄糖</td>
<td>4.5</td>
<td>19.1</td>
</tr>
<tr>
<td>阿洛糖</td>
<td>4.5</td>
<td>17.3</td>
</tr>
</tbody>
</table>

二糖類

<table>
<thead>
<tr>
<th></th>
<th>培養前のpH</th>
<th>南藻直径（mm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>阿洛糖</td>
<td>4.5</td>
<td>19.6</td>
</tr>
<tr>
<td>阿洛糖</td>
<td>4.5</td>
<td>27.7</td>
</tr>
<tr>
<td>阿洛糖</td>
<td>4.5</td>
<td>22.4</td>
</tr>
</tbody>
</table>

多糖類

<table>
<thead>
<tr>
<th></th>
<th>培養前のpH</th>
<th>南藻直径（mm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>多価アルコール</td>
<td>4.7</td>
<td>21.1</td>
</tr>
</tbody>
</table>

20℃、暗黒下で30日間培養。

天、麦芽エキス寒天およびリンゴ生葉汁寒天では連続照明区と連続黒黒区の南藻直径がほぼ同等であった。一般に殺菌効果のある紫外光は多くの菌の生育にとって抑制的に働くが、可視光線は直接には影響しない。しかしPenicillium clavigerumは麦芽寒天では光の影響を受けないが、Czapek寒天では連続照明下で著しく南藻径が抑制されるなど、環境要因との組合せで反応が異なるものもある（諸見里善一，1995）。本菌においても同様に、南藻生育はYps寒天、麦芽エキス寒天およびリンゴ生葉汁寒天では光の影響をほとんど受けないが、PDA、Czapek寒天、Richards寒天およびHopkins寒天では光により抑制されると考えられる。

南藻生育（径）は連続照明、連続黒黒のいずれでも麦芽エキス寒天がもっとも良く、ついでPDAが良好であった。したがって分生子形成的観点からは、暗黒下でのPDA培養がもっとも優れている。

南藻生育と温度との関係では、最適温度が20～25℃であり、リンゴ黒点病菌は比較的高温域を好む性質がみられた。このことは、園場においてリンゴ黒点病菌は夏期の高温時を除く比較的高温条件下で生育できることを示している。また培地のpHとの関係では、pH5～8の酸性域から塩基性域までの広いpH域で比較的良好に生育したことから、感染部位であるリンゴ果実や葉においてpHによる生育への影響は少ないと考えられる。

Richards寒天を基本培地として、炭素化合の種類と生育への影響を調べた結果、総じて無機炭素化合物に比べて有機炭素化合物を添加した場合の生育が良好であった。また同寒天を基本培地として炭素化合の種類と生育への影響を調べた結果、二糖類に比べて二糖類のmaltose、sucroseおよび多糖類のsoluble starchが良好であった。この結果は、本菌の感染部位であるリンゴ果実や葉において、これら物質のいずれかより本菌の生育を促進させていることが示唆される。この点に関しては今後の検討課題としたい。

IV 病気の発生生態

塚内・木村（1961）は果実の生育段階ごとの感染調査から、リンゴの落果期以降における降雨量が多いほど病気が多いことを明らかにした。一方、木村（1938）および関口（1986）はそれぞれCydoniaesp.型分生子、PhloccicticiaおよびPhoma型分生子の伝染源としての働きを検討した。本項では、果実の落葉の成熟期における胞子の飛散、果実の落葉および病原因細胞の役割、Cydoniaesp.型分生子の働き、病原因細胞の侵害方法について記述する。

1．偽子の胞子の成熟と子の胞子の飛散

1）偽子の胞子の成熟と温度

材料および方法

2000年1月19日、県営果樹研究センター内で採取した「つがる」病果落葉を水洗し、風乾後、水を含
第18表 リンゴ黒点病菌侵入のう胞の成熟と温度との関係

<table>
<thead>
<tr>
<th>温度（℃）</th>
<th>10日</th>
<th>20日</th>
<th>30日</th>
<th>61日</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>25</td>
<td>70</td>
<td>67</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>69</td>
<td>60</td>
<td>41</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>75</td>
<td>53</td>
<td>7</td>
</tr>
<tr>
<td>25</td>
<td>23</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

2）圃場における偽子のう胞の成熟過程

材料および方法
2003年4月2日から5月2日まで、県南果樹研究センター圃場で採取した「つかる」罹病葉から偽子のう胞を生じている部分の徒手切片を作り、水に浸して光学顕微鏡下で偽子のう胞の成熟状況を調査した。

結果
4月2日では偽子のう胞のないに子のう胞は確認できなかった。4月9日、15日および20日では子のう胞のないに子のう胞がみられたが、子のう胞の長さが15μm未満であったことから、偽子のう胞は未熟であると判断した。5月2日では子のう胞の長さが15μm以上であり、また子のう胞の重壁の外側が容易に裂け、内壁だけの子のう胞が子のう胞が射出されることを観察したので、偽子のう胞は成熟したと判断した。

3）子のう胞の飛散
子のう胞の飛散現象に関する研究は、アメリカ・ノースカロライナ州のリンゴ園地においてSutton et al.（1987）により行われた。そこで、わが国における子のう胞の飛散現象および時刻ごとの飛散量を検討した。

1）飛散消長

材料および方法
1998～2001年の4か年、県南果樹研究センター圃場において、子のう胞の飛散消長を調査した。いずれの調査も、前年の11月に幅30cm、長さ60cm、高さ30cmの木枠に罹病葉を乾燥させ、翌年の4月3日から7月6日まで、西田（1961）がリンゴ黒点病菌Venturia inaequalisで行った子のう胞飛散消長を基にして、処理を2年間行った。すなわち、グリセリンゼリー（ゼラチン7g、グリセリン50g、フェノール1g、蒸留水42ml：北島1962）を塗布したスライドガラスを、塗布面を上にして木枠内の高さ10cmの位置に2枚設置した。スライドガラスの交換は、1998年および1999年は毎月、2000年および2001年は1～3月とに1回行った。スライドガラスにアクリル標準・ラクトフェノール液を滴下し、子のう胞を染色後、18 x 18 mmカバーガラスの範囲にある子のう胞数を光学顕微鏡を用いて計数した。捕獲数は2枚の合計とした。

結果
1998年から2001年までの子のう胞の飛散消長は第1図～第1図に示した。子のう胞の捕獲期間および捕獲最盛期はそれぞれ1998年が4月5～7月5半旬、
第1図 越冬罹病落葉からのルンゴ黒点病菌の子のう胞子飛散消長（1998年）
試験場所：県南果樹研究センター圃場
試験期間中に捕捉された子のう胞子数：1051個

第2図 越冬罹病落葉からのルンゴ黒点病菌の子のう胞子飛散消長（1999年）
試験場所：県南果樹研究センター圃場
試験期間中に捕捉された子のう胞子数：2637個

第3図 越冬罹病落葉からのルンゴ黒点病菌の子のう胞子飛散消長（2000年）
試験場所：県南果樹研究センター圃場
試験期間中に捕捉された子のう胞子数：1853個

5月3半旬～6月1半旬、1999年が4月6旬～7月4半旬、5月6半旬、2000年が5月1半旬～7月4半旬、5月3半旬、2001年が5月2半旬～7月5半旬、5月6半旬であった。捕捉最盛期においては比較的少ない降水量でも多数の子のう胞子が捕捉された。

1998年および1999年における子のう胞子の飛散と降雨日との関係を第19表に示した。子のう胞子は主に降雨日により捕捉され、それらが捕捉数の大半を占めた。

(2) 飛散時刻

材料および方法

県南果樹研究センター内圃場において、いずれの試験も前年の11月に幅30 cm、長さ60 cm、高さ50 cm の
第19表 リンゴ黒点病菌子の胞子の捕捉数と降雨との関係

<table>
<thead>
<tr>
<th>年</th>
<th>胞子播出期間</th>
<th>降雨日数</th>
<th>降雨日の胞子捕捉数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>4.24～7.21</td>
<td>27</td>
<td>23</td>
</tr>
<tr>
<td>1999</td>
<td>4.26～7.16</td>
<td>32</td>
<td>28</td>
</tr>
</tbody>
</table>

capturing efficiency in the air

における努力ももとに吸収された子の胞子を粘着シートで捕捉する。なお、胞子ライブラリーに回転ドライラの粘着シートとの距離は約5mである。胞子採取器は吸引孔が高さ10 cmの位置に設置した。

この胞子採取器により子の胞子を捕捉した粘着シートを適当な長さに切断し、ニューラインの・ラクトフェノール液を浸した子の胞子を染色後、光学顕微鏡を用いて×300 視野幅で1時間ごとに捕捉された胞子数を計数した。

試験期間は以下とおりである。

試験1：2001年5月25日12時～5月28日12時
試験2：2001年6月18日12時～6月21日12時
試験3：2003年5月15日12時～5月17日24時

温度、相対湿度および降水量は県野果樹研究センターに設置されている気象観測機器（横河電子機器、システム形態ZE765）による測定値を用いた。

結果

試験1（2001年5月25日12時～5月28日12時：第6図）
子の胞子は相対湿度90％を超えた25日22時から捕獲されはじめ、その後7時間後12時がもっとも多かった。その後4時間後16時まで減少し、その後8時間後12時がもっとも多かった。その後6時間後12時まで減少し、その後10時間後12時まで減少し、その後12時間後12時まで減少し、その後14時間後12時まで減少し、その後16時間後12時まで減少した。

試験2（2001年6月18日12時～6月21日12時：第7図）
子の胞子は相対湿度90％を超えた18日23時から捕獲されはじめ、その後4時間後12時がもっとも多かった。その後6時間後12時まで減少し、その後8時間後12時まで減少し、その後10時間後12時まで減少し、その後12時間後12時まで減少し、その後14時間後12時まで減少し、その後16時間後12時まで減少した。

試験3（2003年5月15日12時～5月17日24時：第8図）
2003年5月15日12時から5月16日9時まで、相対湿度100％で捕獲。子の胞子は相対湿度90％を越えた15日12時から捕獲されはじめ、その後捕獲数は急激に増加し、捕獲7時間後12時がもっとも多かった。その後10時間後12時まで減少し、その後12時間後12時まで減少し、その後14時間後12時まで減少し、その後16時間後12時まで減少し、その後18時間後12時まで減少した。
第6図 越冬落葉からリンゴ黒点病菌子の胞子飛散量との飛散性変化と気温、相対湿度、降雨量との関係（2001年5月25日～5月28日）
試験場所：県南果樹研究センター圃場

第7図 越冬落葉からリンゴ黒点病菌子の胞子飛散量との飛散性変化と気温、相対湿度、降雨量との関係（2001年6月18日～6月21日）
試験場所：県南果樹研究センター圃場
その後漸次減少した。

4) 考察

2000年1月中旬に採取した罹病葉米上の偽のう胞子を供試して、偽のう胞子の成熟と温度との関係を検討した。偽のう胞子は5～25℃で成熟したが、30℃の高温では成熟しなかった。25℃の比較的高温においても早期に成熟したので、25℃が成熟適温と考えられる。5月では開花61日後に成熟した偽のう胞子が示されたことから、早春の低温下においても偽のう胞子は着実に発育することが示唆される。

1988～2001年の4か年、越冬罹病葉米からの中胞子の飛散に関する検討を行った。子のう胞子の捕捉は4月下旬または5月上旬から始まり、最盛期は5月中旬～6月上旬で、その後は漸減しながら7月中旬まで続いた。主として降雨日に捕獲され、最盛期の5月中旬～6月上旬においては、わずかな降水量でも多数に捕捉されたので、この期間の降雨は子の胞子の飛散要因として特に重要であると考えられる。

2003年4月2日～5月22日、圃場で採取した罹病葉米に生じる偽の胞子を供試して偽の胞子の成熟過程を検討した。偽の胞子は4月上旬から下旬までは未熟であったが、5月上旬には成熟していた。子の胞子の飛散消長調査において、子の胞子は4月上旬または5月上旬から捕獲されたので、偽の胞子は成熟後、主として降雨があった場合、ただちに子の胞子を飛散させるものと考えられる。

1時間ごとの飛散量調査では、子の胞子は降雨前に湿度が高くかったところからわずかに捕獲されはじめ、降雨が始まって2～7時間後に飛散量がもっとも多く、その後降雨の有無にかかわらず増減を示した。また相対温度100%の条件では飛散量は概して少ないが、長時間連続して相対温度100%で推移した場合には多数の子胞子が飛散した。Sutton et al. (1987) はリンゴ黒点病菌の子胞子は降雨時と激しい露時（heavy dew）に飛散するが、飛散量は降雨時に比較して露時は極わずかであることを報告している。このことは本試験の結果とほぼ一致しているが、青森県南部地方でたびたび出現するヤマセ、すなわち初夏から盛夏にかけて北日本に吹く冷湿の北東風（と達）1971年）気象下においては、多湿条件が続くため多数の子胞子が飛散すると考えられる。

リンゴ黒点病菌の子胞子は日照夜間のいずれでも捕獲されたので、光による飛散への影響はないと考えられる。降雨時に伝染源となる子胞子を飛散させる病原菌として、リンゴ黒点病菌 Venturia inaequalis、リンゴ黒斑病菌 Diplocarpon mali、カンキツ黄斑病菌
Myc Sophia C などが報告されている。このうちリソ黒真菌症症症および「抗原性に子の胚子を飛散ませる粉」とする（MacHardy and Gadouy，1986）。一方リソ黒真菌症症症症と同様に昼夜間のいずれでも飛散することが明らかにされている（近藤ら，2002; Mondal et al.，2003; Whiteside，1970）。

2. 子の胚子の発芽と発芽子の胚子からの

Cylindrosporum 型分生子形成

1) 子の胚子の発芽

子の胚子の発芽と温度、湿度、光および pH との関係について調べた。

(1) 温 度

材料および方法

2001年5月，県南果樹研究センター内圃場で成熟した偽子の胚子を「する」雑菌関係を採取し，流水で30分間水洗した。雑菌を除いた後，偽子の胚子を生じているかさ部分を2，3 cm 角に切り取り，シャーレの上に内壁面に張り付け，20°C，連続照明下（300 lux，昼光色蛍光灯）に18～24時間培養子の胚子を落とさせる。この子の胚子を減菌水で洗浄し，素寒天平面に

第20表 リソ黒真菌症子の胚子発芽と温度との関係

<table>
<thead>
<tr>
<th>温度（℃）</th>
<th>発芽率（％）</th>
<th>最大発芽管長（μm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>145</td>
</tr>
<tr>
<td>15</td>
<td>99</td>
<td>170</td>
</tr>
<tr>
<td>20</td>
<td>98</td>
<td>225</td>
</tr>
<tr>
<td>25</td>
<td>99</td>
<td>305</td>
</tr>
<tr>
<td>30</td>
<td>100</td>
<td>135</td>
</tr>
</tbody>
</table>

2) 素寒天平面を発芽床とし，暗黒下で24時間培養。

第21表 リソ黒真菌症子の胚子発芽と温度との関係

<table>
<thead>
<tr>
<th>相対湿度（％）</th>
<th>発芽率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>0</td>
</tr>
<tr>
<td>92</td>
<td>0</td>
</tr>
<tr>
<td>95</td>
<td>31.3</td>
</tr>
<tr>
<td>98</td>
<td>47.8</td>
</tr>
<tr>
<td>100</td>
<td>57.2</td>
</tr>
</tbody>
</table>

スライドグラスを発芽床として，20°C，暗黒下で24時間培養。

第22表 リソ黒真菌症子の胚子発芽と光との関係

<table>
<thead>
<tr>
<th>区</th>
<th>1回目</th>
<th>2回目</th>
<th>3回目</th>
<th>平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>暗黒区</td>
<td>72.0</td>
<td>42.5</td>
<td>72.5</td>
<td>62.3</td>
</tr>
<tr>
<td>照明区</td>
<td>48.0</td>
<td>13.0</td>
<td>59.5</td>
<td>40.2</td>
</tr>
</tbody>
</table>

2) スライドグラスを発芽床として，20°Cで24時間培養。

発芽率：昼白色蛍光灯，照度：300 lux（連続照明）
第23表 リンゴ黒点病菌子の発芽とpHとの関係

<table>
<thead>
<tr>
<th>pH</th>
<th>発芽率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>31.6</td>
</tr>
<tr>
<td>4</td>
<td>45.1</td>
</tr>
<tr>
<td>6</td>
<td>41.7</td>
</tr>
<tr>
<td>8</td>
<td>50.8</td>
</tr>
<tr>
<td>10</td>
<td>41.2</td>
</tr>
<tr>
<td>12</td>
<td>31.1</td>
</tr>
</tbody>
</table>

pHを変えた蒸留水に懸濁させ、20℃、暗黒下で24時間培養。

結 果

子の発芽率はpH6.5の実験のいずれも暗黒区が照明区より優っていた。

（4）pH

材料および方法

前述と同様の方法で得た子の発芽を懸濁液をスライドグラス上に1滴滴下し、室温下で放養後、1N-HClおよび1N-NaOHでpHを調整した蒸留水を数滴滴下し、相対湿度100%のベット15cmのシャーレ内にビニール袋に設置した。20℃の暗黒下で24時間培養した後、子の発芽数200個について発芽率を調査した。結果はpH6.5の実験で2回繰り返し、結果は平均値で示した。

第24表 リンゴ黒点病菌子の発芽と温度との関係

<table>
<thead>
<tr>
<th>温度（℃）</th>
<th>24時間後</th>
<th>48時間後</th>
<th>72時間後</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>9</td>
<td>85</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>70</td>
<td>95</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>94</td>
<td>100</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

2素寒天平面を発芽床とし、暗黒下で培養。

第25表 リンゴ黒点病菌子の発芽と光との関係

<table>
<thead>
<tr>
<th>区</th>
<th>分生子形成率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>暗黒</td>
<td>28.3</td>
</tr>
<tr>
<td>照明</td>
<td>60.3</td>
</tr>
</tbody>
</table>

※素寒天平面を発芽床とし、20℃で24時間培養。

発芽した子の発芽と光との関係は第24表に示した。

（2）光

材料および方法

前述と同様の方法で得た子の発芽を懸濁液を暗黒下平面に塗布した後、クリーンベンチ内で通風して寒天表面を乾燥させた。5℃、10℃の6段階の温度下（いずれも通風暗黒）で24時間、48時間および72時間培養した後、発芽した子の発芽100個について、Cylindrosporium型分生子を形成する子の発芽数を調査した。結果は平均値で示した。

発芽した子の発芽を光として、暗黒下で培養。

発芽した子の発芽と光との関係は第25表に示した。

発芽した子の発芽と光との関係は第25表に示した。

発芽した子の発芽は、暗黒区が照明区より優っていた。
3) 考察
子の胞子は培養14時間後に10～30℃で良好に発芽した。また発芽管の生育は25℃でももっとも良好、10～20℃で比較的良好、30℃ではやや阻害される傾向であった。したがって、子の胞子の発芽およびその後の発芽管の生育適温は25℃付近の比較的高温であると考えられる。このことは、早春の1月末頃から夏季の7月末頃まで、越冬源から飛散した子の胞子が果実や葉に伝播した後速やかに発芽し、発芽管は果実や葉の表面を伸長することを示唆している。
子の胞子は相対湿度100％での発芽率がもっとも高くなり、98％、95％の順にやや劣り、92％以下ではまったく発芽しなかった。子の胞子は土として降雨時に飛散し、果実や葉に伝播した子の胞子の発芽は相対湿度95％以上の高温が必要であると考えられる。
光との関係では、暗黒区が照明白よりも発芽率が高かったが、暗黒区と照明白区での差は比較的小さかった。光質、照度などについて、さらに検討する必要があるが、光は発芽を抑制するがその程度は小さいと考えられる。子の胞子の飛散は1時間間もない内でも飛散するので、圃場において果実や葉に伝播した子の胞子は1時間間隔を間わずに速やかに発芽すると考えられる。
子の胞子の発芽とpHとの関係では、適値はpH 8.2であるが、pH 2.8およびpH 12でも比較的良好に発芽したので、pHによる発芽への影響は小さく、リンゴ果実や葉に付着した子の胞子はpHによりほとんど影響されることがなく発芽するものと考えられる。
子の胞子からCylindrosporum型分生子形成と温度との関係をみると、発芽中の胞子の温度は20～25℃でCylindrosporum型分生子を良好に形成した。15℃、10℃においても培養24時間後では比較的良好に形成していたが（形成率85％、95％）、30℃では形成が著しく抑制された（形成率2％）。この結果は、早春の1月末頃から夏季の7月末頃まで果実や葉に伝播した子の胞子は2～3日にCylindrosporum型分生子を多量に形成する。一方、夏季の高温時（30℃以上）では形成が抑制されることが示唆される。
光との関係では、暗黒区および照明白区のいずれも発芽子の胞子はCylindrosporum型分生子を形成したが、暗黒区より照明白区の形成率が高まったことから、光はCylindrosporum型分生子の形成を促すと考えられる。したがって、果実や葉の表面上で発芽した子の胞子は夜間でもCylindrosporum型分生子を形成するが、昼間での形成が著しいことを示唆する。
なお、この分生子の伝播源としての働きについては、後述の「IV. Cylindrosporum型分生子の伝播源としての働き」において詳細を述べる。

3. 子の胞子の病原性
リンゴ黒点病菌においては、子の胞子が確認された唯一の伝播源であるが、ワケヤではこれを実験的に確認した結果はない。そこで、子の胞子を果実および葉に接種して、病斑を観察した。

1) 果実に対する病原性
材料および方法
2002年6月、岩手県富山市立大学園内で採取した越冬残群上の黒点病のう胞子懸濁液（3.0 × 10^6 個／ml、Twen20を0.02％添加）を接種源とした。6月11日、8月ま6年生「ぶじ」樹に接種した果実8個に子の胞子懸濁液を接種液接種し、気温、鉄を20～21℃、8時間暗黒・16時間照明（4,000～6,000 lux、薬用電球：松下電工、CF400S-VH）の温室下に7日間接種した。その後は鉄を無加温の冷蔵庫に移し、発病状況を随時観察した。対照の果実には滅菌水を接種した。

結果
果実に対する子の胞子の病原性は第33表に示した。
接種30日後の7月20日、供試8果中的1果で果点が黒変した小点を生じた。接種20日後の8月上旬には6果で典型的な黒点病の病徵、すなわち果点を中心としたやや外側に紅色の病斑を生じた（同版10B）。したがって本菌の子の胞子接種による果実感染では潜伏期間が10～60日であった。病斑部からは接種菌と同様の菌（Cylindrosporum属菌）が高率に再分離された。なお、滅菌水を接種した対照の果実は発病はみられなかった。

第32表 リンゴ黒点病菌子の胞子の果実に対する病原性

<table>
<thead>
<tr>
<th>区名</th>
<th>供試果数（個）</th>
<th>発病果数（個）</th>
<th>1果当たりの平均病斑数（8月10日）</th>
</tr>
</thead>
<tbody>
<tr>
<td>接種</td>
<td>8</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>無接種</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*銅培え「ぶじ」樹の果実を供試し、2002年6月1日に接種。
第27表 リンゴ葉子病菌のう胞子の葉に対する病原性

<table>
<thead>
<tr>
<th>区</th>
<th>供試葉数（葉）</th>
<th>発病葉数（葉）</th>
</tr>
</thead>
<tbody>
<tr>
<td>接種</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>無接種</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

「鉢植え ふじ」樹の葉を供試し、2003年6月11日に接種。

第28表 リンゴ黒点病菌のう胞子接種葉上に生じた偽子のう最世代の形態的特徴

<table>
<thead>
<tr>
<th>項目</th>
<th>リンゴ葉子病菌 (本研究)</th>
<th>Mycosphaerella poni (Walton and Orton, 1926)</th>
</tr>
</thead>
<tbody>
<tr>
<td>偽子のう胞子</td>
<td>色</td>
<td>黒色</td>
</tr>
<tr>
<td>形態</td>
<td>球形～卵球形</td>
<td>-</td>
</tr>
<tr>
<td>径（μm）</td>
<td>58～103</td>
<td>70～100</td>
</tr>
<tr>
<td>高さ（μm）</td>
<td>73～125</td>
<td>-</td>
</tr>
<tr>
<td>子のう胞子</td>
<td>形態</td>
<td>円筒形～卵球形</td>
</tr>
<tr>
<td>大きさ（μm）</td>
<td>33～61×9～12</td>
<td>40～66×8～10</td>
</tr>
<tr>
<td>子のう胞子</td>
<td>色</td>
<td>無色</td>
</tr>
<tr>
<td>形態</td>
<td>長棒状～円錐形</td>
<td>-</td>
</tr>
<tr>
<td>細胞数</td>
<td>2胞</td>
<td>2胞</td>
</tr>
<tr>
<td>大きさ（μm）</td>
<td>17～28×3～5</td>
<td>12.6～26.6×28～42</td>
</tr>
</tbody>
</table>

2) 葉に対する病原性

(1) 病徵の再現

材料および方法

前述と同様の方法で得た子のう胞子懸濁液（41×10⁶個 / ml, Tween20を0.02％添加）を接種源とした。接種葉にニホンブドウを供試し1年生「ふじ」を1株用いた。2003年6月11日、樹の直後に枝を残して剪定し、先端から下方へ10葉位までの葉の表面に子のう胞子懸濁液を噴霧接種した。風乾後、鉢を20～21℃、8時間間隔で16時間間隔（4,000～6,000 lux、ラピゲン灯）の湿潤下に7日間保つ。その後は鉢を加湿器のガラス湿下で管理し、発病状況を随時観察した。対照葉に葉汁を噴霧した。

結果

葉に対する子のう胞子の病原性は第27表に示した。

接種約3か月後の9月下旬に供試10葉のうち1葉で自然発病と同様の不正型、紫褐色の病斑を生じ、10月上旬では10葉のいずれも発病した。発病葉は順次黒変落葉し、10月下旬ではいずれも落葉した（図版10C）。したがって本菌の子のう胞子接種による葉の感染速度は前後5～4か月であった。病斑部からは接種菌と同様の菌 (Cytophthora sp. 原株) が高率に再分離された。なお、減菌水を噴霧した対照の葉では発病はみられなかった。

(2) 接種葉に生じた偽子のう変世代の観察

材料および方法

前述「1口病徵の再現」における、子のう胞子接種変異落葉3葉を供試した。10月2日、変異落葉を流水立てて水洗し、風乾後、水分を含んだミスコケ膜湿下とした径15cmのシャラ型入れ、5℃の暗黒下に保った。約6か月後の2004年4月7、8日に葉の病斑上に生じた偽子の変異部分の片手切片を作り、光学顕微鏡下で病原菌の形態を観察した。偽子の変異、子のうおよび子のう胞子はそれぞれ50個について大きさを計測した。

結果

子のう胞子接種葉上に生じた偽子の変異世代の形態的特徴は第28表に示した。

偽子の変異は葉の表面の皮層に埋没して生じ、黑色。球形～卵球形、頂端に乳頭状の孔口を有し、径58～103
4. Cylindrospermum 型分生子の伝染源としての働き

2003年6月、県南果樹研究センター内の無防除のリンゴ園から採取した果実および葉の表面を顕微鏡で用いて観察した結果、子の胞子は全体的に、あるいは子の胞子から発生した菌糸上に形成される Cylindrospermum 型分生子を発見した。この発見に基づき Cylindrospermum 型分生子の伝染源としての働きを検討した。

1）圃場リンゴ樹の果実および葉上における Cylindrospermum 型分生子形成

材料および方法

2003年6月21日から6月28日までの期間、無防除の圃場から採取した果実および葉の表面のいずれにおいても、発生する子の胞子が新たに発生した分生子がみられた。子の胞子は幼齢にて発芽管を生じ、この子の胞子から直接または子の胞子から発生した菌糸上に Cylindrospermum 型分生子を生じていた（図版11A~C）。

2）子の胞子接種リンゴ葉表面上における Cylindrospermum 型分生子形成

材料および方法

2003年6月、県南果樹研究センター内圃場で採集した越冬種病葉果実から得た子の胞子懸濁液（5.0 × 10^7個/ml、Tween20を0.02%添加）を接種源とした。接種植物には緑病魚1年生ふじを2株用いた。2003年6月13日、圃場の北東枝を2枝残して刈去し、各株の葉の表面に子の胞子懸濁液を小型懸濁器を用いて接種播種した。播種は20~21℃、8時間暗黒、16時間照明（4,000~6,000lux、ハロゲン灯）の温室下に、24時間、18時間、72時間および96時間後に、それぞれ1株から2葉を採取し1葉から7mm角の3葉片を切り取った。これらの葉片にトリベンプレー、酢酸液を滴下し子の胞子を染色した後、水封入プレバラートを作り光学顕微鏡下で観察した。

結果

接種24時間後には、ほとんどの子の胞子が発芽し、発芽した子の胞子の多くが分生子を生じていた。発芽管子の胞子の両端から伸長し、しばしば子の胞子は3個生じていた。Cylindrospermum 型分生子は子の胞子から直接、または子の胞子から発生した菌糸上に形成されていた（図版11D）。96時間後では、対系は葉表面を分岐しながら生じ、大量に分生子を生じていた（図版11E）。また気孔から侵入する菌糸も認められた。
第29 表 黒点黴菌のう胞子接種リング薬葉に新たに形成されたCylindrosporum 型分生子のリング果実に対する病原性

<table>
<thead>
<tr>
<th>区</th>
<th>調査果数（個）</th>
<th>発病果数（個）</th>
<th>1果当たりの平均病斑数</th>
</tr>
</thead>
<tbody>
<tr>
<td>接種</td>
<td>12</td>
<td>12</td>
<td>296</td>
</tr>
<tr>
<td>無接種</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

（福井）果実を供試し、2003年6月23日接種、同年9月3日発病調査。

なお、ここで生じた分生子はCylindrosporum 型、無色、糸状～円筒形、まっすぐ～湾曲、大きさ 10～65×1.5～3μm、0～5個室であり、形態的特徴がBrooks and Black (1912) および三浦 (1915) による C. poni の記載と一致した。

3）リング薬葉上で形成されたCylindrosporum 型分生子の病原性

材料および方法

2003年6月、上述と同様の方法で得た子のう胞子懸濁液（5.0×10^6 個 / ml, Tween20 を 0.02% 添加）を上述と同様の方法で接種後1年生「ふじ」葉に接種した。接種後、接種部位の表面を観察した。10日後、葉面に生じたCylindrosporum 型分生子を減菌水中に懸濁し、これを10倍のガーゼを通過、Cylindrosporum 型分生子懸濁液（2.0×10^6 個 / ml, Tween20 を 0.02% 添加）を得た。なお懸濁液には子のう胞子が 2.0×10^6 個 / ml 含まれていたが、これらの子のう胞子には細胞質がみられなかったので、死滅していると判断した。2003年6月23日、この分生子懸濁液を県農業研究センター土壌圃場の「福井」の無傷果実に小型噴霧器を用いて噴霧接種し、9月3日に発病調査した。対照の果実には減菌水を噴霧した。なお供試果実は自然発病を避けるため、接種後20日前にハトロン紙袋で被覆し、接種直前に除袋し、接種を行った後再びハトロン紙袋で被覆した。供試果実数は12果とした。

結果

子のう胞子の発芽により生じたCylindrosporum 型分生子のリング果実に対する病原性は第29 表に示した。

発病した子のう胞子を除来するCylindrosporum 型分生子を接種したリング果実は黒点病を生じ、接種菌部はから接種菌と同様のCylindrosporum 型分生子を形成し、自然発病を避けたため隔離した植え付けのリング果を用いて、葉子のう胞子を接種し観察した結果、圃場下を含む、葉の表面において子のう胞子体および子のう胞子の発芽により生じた病徵面に多数のCylindrosporum 型分生子が形成された。この分生子を回収してリング果実に接種したところ、典型的な黒点病を生じ、この実験結果から、Cylindrosporum 型分生子は生育期の圃場において二次伝染源として働いていると結論される。リング果実の発病が最も弱いのはときに好ましい多数の小病所の発生する本病特有の病徵（図版1A～D, 2A～H, 3A～H）は、このようなCylindrosporum 型分生子の二次感染に起因するものと考えられる。

なお、Fのう胞子を接種した薬葉において、子のう胞子から生じた病所はCylindrosporum 型分生子を生じながら生育し気孔侵入することが観察された。本菌のリング
5. 病原菌の宿主への侵入

1) 果 実

材料および方法

単子のう胞子分散株No.22をPDA培養して得たCylindrosporium型分生子懸濁液（5.0×10^6個・ml, Tween20を0.02%添加）を接種源とした。2004年6月19日、県南果樹研究所センター内圃場から採取した「紅玉」果実（供試果実は自然発病を避けるため、採取約20日前にハトロン紙製袋で覆蔽）に分生子懸濁液を噴霧接種した。水をしみ込ませたら紙を敷き湿した状態で24時間後、5cm×5cmの検査用シャーレに果実を入れ、20℃、暗黒下に保持した。接種24時間、48時間、72時間、96時間、120時間および240時間後に、それぞれ果実を2個取り出し、錐尖のナイフを用いて5mm角の胞子皮に厚さ0.3〜0.6mmをできるだけ少く切り取った。この胞子皮の表面にトリパンブルー染色液を滴下し黒色染色した後、水封入プレパラートを作成し観察した。

結果

接種24時間後は、ほとんどの分生子は発芽していた。その後、分生子から生じた菌糸は果実表面に生育し、接種120時間後からは果実内部に侵入した（図版11G）。時間の経過とともに気孔から気孔から侵入する菌糸が多くみられたが、240時間後においても気孔以外からの侵入は認められなかった。

2) 葉

材料および方法

越冬した葉病葉斑から得たいのう胞子懸濁液（5.0×10^6個・ml, Tween20を0.02%添加）を接種源とした。接種植物には銅植え1年生、播種型（白木：マルバウッドオ）を用いた。2003年6月13日、樹の当年枝2枝を残して剪断し、各枝の全葉の裏表にいのう胞子懸濁液を噴霧接種した。銅は20〜32℃、8時間暗黒・16時間照明（4,000〜6,000lux, ハロゲン灯）の温室下に保ち、接種24時間、48時間、72時間、96時間、120時間および240時間後に、それぞれ1株から2葉を採取し1葉かから7mm角の3葉片を切り取った。この葉片にトリパンブルー・酸染液を滴下し黒色染色した後、水封入プレパラートを作成し光学顕微鏡下で観察した。

結果

接種24時間後は、ほとんどのいのう胞子は発芽し、発芽したいのう胞子の多くは分生子を生じていた。48時間および72時間後はいのう胞子から生じた菌糸はCylindrosporium型分生子を生しながら生育し、96時間後には気孔から気孔組織に侵入した（図版11H）。その後も時間の経過とともに気孔から気孔から侵入する多くの菌糸が認められたが、240時間後においても気孔以外からの侵入は認められなかった。

3) 考察

植物病原糸状菌類は固有の侵入法を備えていて、その方法は傷斑侵入、角皮侵入、気孔侵入などがある。気孔侵入では一旦気孔から着生を形成する場合としない場合がある（高, 1995）。Mycosphaerella属菌による病原菌では、主として角皮侵入を行うユッカリ葉斑病の病原菌M. cryptica（Park and Keane, 1982), 気孔侵入を行うユッカリ葉斑病の病原菌M. mabiloosa（Park and Keane, 1982), カンキツ葉斑病の病原菌M. citri（Whitesides, 1972), 1コギセシトリアトリチリブレントの病原菌M. graminicola（Duncan and Howard, 2000）など、気孔侵入および角皮侵入のいずれも報告されている。

本研究においては果実はCylindrosporium型分生子を供し、葉ではいのう胞子を供して、リンゴ黒病菌の侵入法を検討した。いずれにおいても胞子から生じた菌糸は果実や葉の表面を一定の傾向なく生育し、またまた気孔上に生育した菌糸が付着器を形成せずに気孔から侵入した。一方、角皮侵入は果実および葉のいずれにおいても観察できなかった。いのう葉斑の発病と果実および葉の病斑部を観察した結果においても、角皮侵入と思われる侵入は観察できなかった。Sutton et al. (1987)もリンゴ黒病菌Cylindrosporium型分生子の接種実験において、気孔侵入だけを確認している。

気孔侵入するMycosphaerella属菌病原菌においては、気孔上で菌糸先端に付着器構造を生じた後、植物体に侵入するため明らかにされている（Duncan and Howard, 2000, Whitesides, 1972）。リンゴ黒病菌については、Sutton et al. (1987)は接種したCylindrosporium型分生子の約5%が気孔上で発芽管先端に付着器構造を生じることを報告している。しかし本観察においては、付着器構造は認められなかった。この点については今後の検討課題と考えたい。

6. 感染と発病

果実の感染時期および果実の生育段階に伴う感受性の移動を明らかにすることは、的確な防除を行ううえで重要である。そこで果実における発病発育、感染時期および生育段階に伴う感受性の移動を検討した。さらに葉銅と発病との関係、また枝における発病の可能性についても観察により検討した。

1) 果実における発病発育

材料および方法

発育したいのう胞子の多くは分生子を生じていた。48時間および72時間後はいのう胞子から生じた菌糸はCylindrosporium型分生子を生しながら生育し、96時間後には気孔からの気孔組織に侵入した（図版11H）。その後も時間の経過とともに気孔から気孔からの多くの菌糸が認められたが、240時間後においても気孔以外からの侵入は認められなかった。
2000～2003年の4年間、県南果樹研究センター内圃場の「つがる」（台木：M.9，2000年における樹勢：26年）3樹を供試した。供試樹は毎年同一樹を用い、いずれの年も開花前まで一般防除管理し、それ以後無防除とした。
6月上旬から収穫期の9月上旬までの間隔、約10日間毎に1樹から30果（合計150果）を無作為に選び、発病果率を調査した。

結果
果実における発生消長は第9図に示した。
果実における自然発病は6月下旬または7月上旬からみられ、その後急激に発病果率が高まり、8月上旬ではほぼ全果が発病した。

第9図 リンゴ「つがる」果実における黒点病の発生消長
試験場所：県南果樹研究センター圃場

第30表 リンゴ「つがる」果実の生育段階と黒点病感染との関係*（1997年）

<table>
<thead>
<tr>
<th>区</th>
<th>月</th>
<th>日数（日）</th>
<th>調査果数</th>
<th>発病果率（%）</th>
<th>1果当たりの平均病斑数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.22～5.28</td>
<td>4～10</td>
<td>93</td>
<td>95.7</td>
<td>17.0</td>
</tr>
<tr>
<td>2</td>
<td>5.28～6.2</td>
<td>10～15</td>
<td>83</td>
<td>100</td>
<td>62.1</td>
</tr>
<tr>
<td>3</td>
<td>6.2～6.7</td>
<td>15～20</td>
<td>89</td>
<td>100</td>
<td>84.1</td>
</tr>
<tr>
<td>4</td>
<td>6.7～6.12</td>
<td>20～25</td>
<td>88</td>
<td>88.6</td>
<td>17.8</td>
</tr>
<tr>
<td>5</td>
<td>6.12～6.17</td>
<td>25～30</td>
<td>91</td>
<td>76.9</td>
<td>7.4</td>
</tr>
<tr>
<td>6</td>
<td>6.17～6.22</td>
<td>30～35</td>
<td>76</td>
<td>81.2</td>
<td>9.5</td>
</tr>
<tr>
<td>7</td>
<td>6.22～6.27</td>
<td>35～40</td>
<td>76</td>
<td>80.3</td>
<td>6.0</td>
</tr>
<tr>
<td>8</td>
<td>6.27～7.2</td>
<td>40～45</td>
<td>85</td>
<td>69.4</td>
<td>3.1</td>
</tr>
<tr>
<td>9</td>
<td>7.2～7.7</td>
<td>45～50</td>
<td>84</td>
<td>61.3</td>
<td>6.5</td>
</tr>
<tr>
<td>10</td>
<td>全期間被覆</td>
<td></td>
<td>86</td>
<td>77.9</td>
<td>5.0</td>
</tr>
<tr>
<td>11</td>
<td>全期間露出</td>
<td></td>
<td>100</td>
<td>100</td>
<td>58.0</td>
</tr>
</tbody>
</table>

*試験場所：県南果樹研究センター圃場。発病調査：9月1日。
*「ふじ」の落花日：5月18日。
試験3：2000年5月25日（落花1日後）、1区1樹を供試し、1樹から無作為に選んだ50果をパトロン紙袋で被覆した。第32表に示したように、5月25日（落花1日後）から8月31日（落花97日後）までの期間、10日間（ただし1区は11日間、8区は27日間）を除き果実を露出させた後再び被覆した。8月31日に供試果実のうち30果を無作為に選び発病調査した。対照として、試験期間を通じて果実を被覆した区と露出した区を設けた。なお試験圃場は5月11日（開花直前）まで一般防除管理し、それ以降は無防除とした。

結果
試験1：1997年における果実の生育段階と感染との関係は第30表に示した。
試験期間を通じて被覆した対照の果実でも軽微な発病がみられたが、落花1日後から25日後までの期間に露出した各区の発病果率が高く、1果当たりの平均病斑数も多かった。特に落花10日後～15日後および落花15日後～20日後に露出した区の発病率が高く、1果当たりの平均病斑数も著しく多かった。

試験2：1999年における果実の生育段階と感染との関係は第31表に示した。
落花50日後から落花97日後まで露出した果実は、発病果率が被覆区の100.0％に対して100.0％であり、1果当たりの平均病斑数も被覆区に比べ明らかに多かった。

試験3：2000年における果実の生育段階と感染との関係は第32表に示した。
試験期間を通じて被覆した対照の果実でも軽微な発病がみられたが、落花1日前から落花50日後までの期間に露出した各区の発病果率が高く、1果当たりの平均病斑数も多かった。特に、落花10日後～20日後に露出した区

| 第31表 りんご 'つがる' 果実の生育段階と黒点病感染との関係(1999年) |
|------------------|------------------|------------------|
| 区 | 果実の露出期間 | 調査果数 | 発病果率 | 1果当たりの平均病斑数 |
| | | (個) | (%) | |
| 1 | 7.9～8.25 | 50～97 | 30 | 100 | 34.0 |
| 2 | 1.区間被覆 | 30 | 10.0 | 0.1 |

2 試験場所：県南果樹研究センター圃場、発病調査：8月25日。
3 'つがる'の落花日：5月20日。

| 第32表 りんご 'つがる' 果実の生育段階と黒点病感染との関係(2000年) |
|------------------|------------------|------------------|
| 区 | 果実の露出期間 | 調査果数 | 発病果率 | 1果当たりの平均病斑数 |
| | | (個) | (%) | |
| 1 | 5.25～6.5 | ~10 | 30 | 86.7 | 12.5 |
| 2 | 6.5～6.15 | 10～20 | 30 | 100 | 144.5 |
| 3 | 6.15～6.25 | 20～30 | 30 | 96.7 | 16.6 |
| 4 | 6.25～7.5 | 30～40 | 30 | 100 | 50.4 |
| 5 | 7.5～7.15 | 40～50 | 30 | 100 | 29.6 |
| 6 | 7.15～7.25 | 50～60 | 30 | 60.0 | 2.9 |
| 7 | 7.25～8.4 | 60～70 | 30 | 96.7 | 10.1 |
| 8 | 8.4～8.31 | 70～97 | 30 | 93.3 | 7.1 |
| 9 | 全期間被覆 | 30 | 76.7 | 3.5 |
| 10 | 全期間露出 | 30 | 100 | 222.9 |

2 試験場所：県南果樹研究センター圃場、発病調査：8月31日。
3 'つがる'の落花日：5月26日。
第33表 リンゴ「つがる」果実の黒点病感受性の推移（1999年）

<table>
<thead>
<tr>
<th>区</th>
<th>接種月目</th>
<th>「ふじ」の落花後日数（日）</th>
<th>調査果数 (個)</th>
<th>発病果数 (個)</th>
<th>1果当たりの平均病斑数</th>
</tr>
</thead>
<tbody>
<tr>
<td>接種<sup>1</sup></td>
<td>5.24</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>172.8</td>
</tr>
<tr>
<td></td>
<td>6.4</td>
<td>15</td>
<td>8</td>
<td>8</td>
<td>382.4</td>
</tr>
<tr>
<td></td>
<td>6.23</td>
<td>34</td>
<td>8</td>
<td>8</td>
<td>302.4</td>
</tr>
<tr>
<td></td>
<td>7.7</td>
<td>48</td>
<td>4</td>
<td>4</td>
<td>236.8</td>
</tr>
<tr>
<td>対照（水）</td>
<td>5.24</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>4.2</td>
</tr>
</tbody>
</table>

¹ 試験場所：県南果樹研究センター圃場。
² 「ふじ」の落花日：5月21日。
³ 単子のうち高分離株No.22の生子発菌液供試接種。9月7日発病調査。

第34表 リンゴ「つがる」果実の黒点病感受性の推移（2000年）

<table>
<thead>
<tr>
<th>区</th>
<th>接種月目</th>
<th>「ふじ」の落花後日数（日）</th>
<th>調査果数 (個)</th>
<th>発病果数 (個)</th>
<th>1果当たりの平均病斑数</th>
</tr>
</thead>
<tbody>
<tr>
<td>接種<sup>1</sup></td>
<td>5.31</td>
<td>5</td>
<td>10</td>
<td>9</td>
<td>18.3</td>
</tr>
<tr>
<td></td>
<td>6.10</td>
<td>15</td>
<td>8</td>
<td>8</td>
<td>137.3</td>
</tr>
<tr>
<td></td>
<td>6.20</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>77.6</td>
</tr>
<tr>
<td></td>
<td>6.30</td>
<td>35</td>
<td>10</td>
<td>10</td>
<td>35.3</td>
</tr>
<tr>
<td></td>
<td>7.10</td>
<td>45</td>
<td>10</td>
<td>10</td>
<td>16.6</td>
</tr>
<tr>
<td>対照（水）</td>
<td>5.31</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>5.0</td>
</tr>
</tbody>
</table>

¹ 試験場所：県南果樹研究センター圃場。
² 「ふじ」の落花日：5月26日。
³ 単子のうち高分離株No.22の生子発菌液供試接種。8月28日発病調査。

の発病果率が高く、1果当たりの平均病斑数も著しく多かった。

3）果実の感受性推移

材料および方法

県南果樹研究センター圃場の「つがる」果実（台木：M.265 树勢：20～22年）を供試し、病原菌接種法により果実の感受性の推移を検討した。単子のうち高分離株No.22をPDA平面で培養して得た生子菌から調製した懸濁液（5.1×10⁵/ml。Tween 20を0.02%添加）を接種源とした。なお、リンゴ果実の生育段階は「ふじ」の落花後日数で示した。

試験1：1999年5月24日（落花4日後）から7月7日（落花48日後）までの期間。第33表に示したように11〜19日間隔で生子懸濁液を小型噴霧器を用いて、無傷果実に噴霧接種した。接種後は中澤（1995）がリンゴすず細菌病の接種試験で行った方法、すなわち蒸留水を含ませた脱脂綿で果実を巻き、さらに果柄を含む果実全体をアルミニウム箔で包む方法により湿囲した。5日後に脱脂綿およびアルミニウム箔を除き、その後ただちにハトロン紙実袋で被覆し、9月7日に発病調査した。なお供試果実は自然発病を避けるため、いずれの果実も5月21日にハトロン紙実袋で被覆し、接種直前に除袋した。

試験2：2000年5月31日（落花5日後）から7月10日（落花45日後）までの期間。第34表に示したように10日ごとに生子懸濁液を無傷果実に噴霧接種し、8月28日にそれぞれ発病調査した。なお供試果実は5月25日にハトロン紙実袋で被覆し、接種直前に除袋し、接種を行った後再びハトロン紙実袋で被覆した。各区10果を供し、試験期間中の落果果実は調査から除いた。

試験3：2001年5月22日（落花2日後）から7月19日（落花60日後）まで、「試験2」と同様の方法で時期別に無傷果実に噴霧接種し、9月10日に発病調査した。なお供試果実は5月21日にハトロン紙実袋で被覆し、接種直前
第35表 リンゴ ‘つがる’ 果実の黑点病感受性の推移②（2001年）

<table>
<thead>
<tr>
<th>区</th>
<th>接種月日</th>
<th>‘ふじ’の落花後</th>
<th>調査果数</th>
<th>発病果数</th>
<th>1果当たりの平均病斑数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>日数③（日）</td>
<td>（個）</td>
<td>（個）</td>
<td></td>
</tr>
<tr>
<td>接種④</td>
<td>5.22</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>5.30</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>229.2</td>
</tr>
<tr>
<td></td>
<td>6.11</td>
<td>22</td>
<td>7</td>
<td>7</td>
<td>322.1</td>
</tr>
<tr>
<td></td>
<td>6.19</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>342.6</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>46</td>
<td>10</td>
<td>10</td>
<td>180.4</td>
</tr>
<tr>
<td></td>
<td>7.19</td>
<td>60</td>
<td>7</td>
<td>7</td>
<td>62.0</td>
</tr>
<tr>
<td>対照（水）</td>
<td>5.22</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

②試験場所：広島県農業試験センター鶴岡場。
③‘ふじ’の落花日：5月20日。
④単子のう胞子分離株No.22の分生子懸濁液噴霧接種。9月10日発病調査。

に除菌し、接種を行った後再びハトロン紙製袋で被覆し、各区10果を供し、試験期間中の落花果実は調査から除いた。

結果
試験1：1999年における果実の感受性の推移は第33表に示した。

感受性程度は1果当たりの平均病斑数で評価した。5月24日（落花4日後）から7月7日（落花48日後）までのいずれの時期に接種した果実も発病した。1果当たりの平均病斑数は6月4日（落花15日後）に接種した果実はもっとも多く、その後順次減少したが、7月7日（落花48日後）においても236.8であり、発病程度は高かった。

試験2：2000年における果実の感受性の推移は第34表に示した。

5月31日（落花5日後）から7月10日（落花45日後）までのいずれの時期に接種した果実も発病した。1果当たりの平均病斑数は6月10日（落花15日後）に接種した果実がもっと多く、その後順次減少した。

試験3：2001年における果実の感受性の推移は第35表に示した。

5月22日（落花2日後）から7月19日（落花30日後）まで、いずれの時期に接種した果実はも発病し、各果当たりの平均病斑数は5月30日（落花10日後）から6月19日（落花30日後）までの期間に接種した果実で多く、その後順次減少した。

4）葉の老若と発病

材料および方法

単子のう胞子分離株No.22をPDA平板で培養して得た分生子から調製した懸濁液（5.7×10⁹個/ml、Tween20を0.02％添加）を接種源とした。接種植物には鉢植え1年生‘ふじ’（台木：マルバカイドウ）を2樹用いた。2002年7月24日、樹の当年枝1枝を残して剪去し、先端から基部までの枝を葉に分生子懸濁液を噴霧接種した（葉では表裏面に接種）。風乾後、鉢全体をポリエチレン袋で覆い温室とした。7日間後の発病（24℃～29℃）に観察した。その後、鉢を無加温のガラス温室に移し管理し、翌年の4月3日まで発病の有無を観察した。4月3日には接種枝の皮目を2mm角に切り取り、70％エタノールに5秒間浸して脱脂後、塩酸リノク酸ナトリウム溶液（有効塩素含量1％）で10秒間表面殺菌した。さらに滅菌水で2回洗浄、クリーンベンチ内で滅菌する紙

76
第36表 リンゴ病葉上の病葉と黒点病発病との関係

<table>
<thead>
<tr>
<th>鉢No.</th>
<th>調査日</th>
<th>(←先端)</th>
<th>枝位</th>
<th>(基部 →)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(月日)</td>
<td>1 2 3 4</td>
<td>5 6 7 8 9 10</td>
<td></td>
</tr>
<tr>
<td>No. 1</td>
<td>9.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.14</td>
<td>+ + +</td>
<td>- + - - + +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.2</td>
<td>+++ +++ +++</td>
<td>+ + +++ + + +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.16</td>
<td>+++ +++ +++ +++ +++ +++ +++ +++</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.31</td>
<td>+++ +++ +++ +++ +++ +++ +++ +++</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.13</td>
<td>+++ +++ +++ +++ +++ +++ +++ +++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 2</td>
<td>9.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.14</td>
<td>+ + +</td>
<td>- + - - + +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.2</td>
<td>+++ +++ +++</td>
<td>+ + +++ + + +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.16</td>
<td>+++ +++ +++ +++ +++ +++ +++ +++</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.31</td>
<td>+++ +++ +++ +++ +++ +++ +++ +++</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.13</td>
<td>+++ +++ +++ +++ +++ +++ +++ +++</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 鉢植え "ふじ" 树を供試し、2002年7月16日早子のう胞子分離株22の分生子懸濁液噴霧接種。
3 発病程度 - : 発病なし、+ : 発病初期（不正形、紫褐色病斑を生じている）、++ : 黄変、
 +++ : 落葉。

第37表 リンゴ黒点病菌接種リンゴ枝の皮目からの同状菌の分離試験結果

<table>
<thead>
<tr>
<th>供試皮目数（個）</th>
<th>分離皮目数（個）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>黒点病菌</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
</tr>
</tbody>
</table>

2 鉢植え "ふじ" 树の当年枝を供試し、2002年7月16日早子のう胞子分離株22の分生子懸濁液噴霧接種。翌2003年1月に分離。

上に並べ50 ~ 60分間通風して乾燥させ、供試枝は半面に置床し、20℃、暗黒下で7日間培養した。供試枝は5個（合計40個）とし、対照枝には滅菌水を噴霧した。

結果

接種枝はいずれも接種前9ヶ月までに発病したが、枝では接種前9ヶ月後の4月3日においてもまったく発病がみられなかった。また接種枝の皮目からリンゴ黒点病菌は分離されなかった（第37表）。

6) 考察

リンゴ黒点病菌に対する果実の感染時期を「つがる」果実で被袋除袋法により検討した。1997年および2000年の試験において、試験期間を通じて被覆した対照の果実では短時間内に発病がみられたので、感染時期の詳細を明らかにできない。しかし1997年には「ふじ」の落花10日後（5月22日）から「ふじ」の落花25日後（6月12日）までの期間に露出した区、2000年には「ふじ」の落花10日後（5月25日）から「ふじ」の落花50日後（7月15日）までの期間に露出した各区の発病率が明らかに高く、1果当たりの平均病斑数も多かった。特に落花と「ふじ」の落花10日後～20日後（1997年: 5月28日～6月7日、2000年: 6月5日～6月15日）に露出した区で発病率が高く、1果当たりの平均病斑数も著しく多かった。したがって果実の発病は落花間もないころから「ふじ」の落花50日後までが高く、特に「ふじ」の落花10日後～20日後が激しいと考えられる。また1999年の試験で、「ふじ」の落花50日後（7月9日）から「ふじ」
7. リンゴ果実の感受性と宿主範囲

1) リンゴ

リンゴ果実病は「光」、「赤」、「黒」、特に「赤」を発生させる、と、「種」で発生することが多い（三浦、1915）。また新しい品種では「つがる」で発生しやすい（新谷ら、1997）。本試験では果実の自然発病および接種による発病状況の調査により、最近の主要品種について感受性の差異を検討した。

(1) 自然発病

材料および方法

2001年、2003年および2004年の3か年、県南国樹研
究センター内圃場の「陸奥」、「つがる」、「紅玉」、「ジョナゴールド」、「玉林」、「ふじ」、「北斗」、「スターキングデリシャス」および「国光」の9品種（台木：M36）について、果実における自然発病の状況を調査した。

2001年：1品種7樹（樹齢：4年）を供試し、落花直後頃から落花45日後頃までを無防除とし、それ以外の時期は一般的防除管理を行った。8月22日から9月6日に供試樹に着果する全果を探取し発病調査した。

2002年：1品種6樹（樹齢：5年）を供試し、落花直後頃から落花60日後頃までを無防除とし、それ以外の時期は一般的防除管理を行った。8月22日から9月2日に各品種の60果（国光は36果）を探取し発病調査した。

2003年：1品種2樹（樹齢：7年）を供試し、落花直後頃から落花60日後頃までを無防除とし、それ以外の時期は一般的防除管理を行った。「つがる」は9月13日、それ以外の品種は10月8日に各品種30果を探取し発病調査した。

結 果
圃場における各品種の自然発病状況は第38表～第40表に示した。

供試したいずれの品種も発病した。各品種の発病果率および1果当たりの平均病斑数を「紅玉」と比較した。

2001年：発病果率は「陸奥」および「つがる」が「紅玉」よりも高く、「ジョナゴールド」および「玉林」および「ふじ」が低く、「スターキングデリシャス」が著しく低かった。

1果当たりの平均病斑数も「陸奥」および「つがる」が「紅玉」よりも高く、「ジョナゴールド」および「玉林」および「ふじ」が低く、「スターキングデリシャス」が著しく低かった。

2002年：発病果率は「陸奥」、「つがる」および「ジョナゴールド」が「紅玉」と同じ、「玉林」、「ふじ」、「北斗」、「国光」と「スターキングデリシャス」が低かった。

1果当たりの平均病斑数は「陸奥」および「つがる」が「紅玉」よりも高く、「ジョナゴールド」および「玉林」および「ふじ」が低く、「国光」および「スターキングデリシャス」が著しく低かった。

2003年：発病果率は「陸奥」、「つがる」および「ジョナゴールド」が「紅玉」とほとんど同じ、「ふじ」、「北斗」、「国光」

第38表 園場2におけるリンゴ黒点病自然発病状況（2001年）

<table>
<thead>
<tr>
<th>品種</th>
<th>調査果数（個）</th>
<th>発病果率（%）</th>
<th>1果当たりの平均病斑数</th>
</tr>
</thead>
<tbody>
<tr>
<td>陸奥</td>
<td>32</td>
<td>100</td>
<td>16.8</td>
</tr>
<tr>
<td>つがる</td>
<td>23</td>
<td>95.7</td>
<td>14.2</td>
</tr>
<tr>
<td>ジョナゴールド</td>
<td>100</td>
<td>87.0</td>
<td>7.8</td>
</tr>
<tr>
<td>紅玉</td>
<td>122</td>
<td>90.2</td>
<td>8.7</td>
</tr>
<tr>
<td>玉林</td>
<td>120</td>
<td>76.7</td>
<td>5.9</td>
</tr>
<tr>
<td>ふじ</td>
<td>95</td>
<td>65.6</td>
<td>3.2</td>
</tr>
<tr>
<td>スターキングデリシャス</td>
<td>44</td>
<td>13.6</td>
<td>0.4</td>
</tr>
</tbody>
</table>

2 高知県農業研究センター圃場。

第39表 園場2におけるリンゴ黒点病自然発病状況（2002年）

<table>
<thead>
<tr>
<th>品種</th>
<th>調査果数（個）</th>
<th>発病果率（%）</th>
<th>1果当たりの平均病斑数</th>
</tr>
</thead>
<tbody>
<tr>
<td>陸奥</td>
<td>90</td>
<td>97.8</td>
<td>18.1</td>
</tr>
<tr>
<td>つがる</td>
<td>90</td>
<td>100</td>
<td>19.1</td>
</tr>
<tr>
<td>ジョナゴールド</td>
<td>90</td>
<td>98.9</td>
<td>11.4</td>
</tr>
<tr>
<td>紅玉</td>
<td>90</td>
<td>98.9</td>
<td>11.7</td>
</tr>
<tr>
<td>玉林</td>
<td>90</td>
<td>92.2</td>
<td>10.9</td>
</tr>
<tr>
<td>ふじ</td>
<td>90</td>
<td>93.3</td>
<td>7.9</td>
</tr>
<tr>
<td>北斗</td>
<td>90</td>
<td>91.1</td>
<td>6.5</td>
</tr>
<tr>
<td>国光</td>
<td>36</td>
<td>77.8</td>
<td>2.5</td>
</tr>
<tr>
<td>スターキングデリシャス</td>
<td>90</td>
<td>67.8</td>
<td>1.7</td>
</tr>
</tbody>
</table>

2 高知県農業研究センター圃場。
第40表 圃場内におけるリンゴ黒点病自然発病状況（2004年）

<table>
<thead>
<tr>
<th>品種</th>
<th>調査果数（個）</th>
<th>発病果数 （個）</th>
<th>1果当たりの平均病斑数</th>
</tr>
</thead>
<tbody>
<tr>
<td>陸奥</td>
<td>30</td>
<td>100</td>
<td>13.0</td>
</tr>
<tr>
<td>つがる</td>
<td>30</td>
<td>100</td>
<td>18.0</td>
</tr>
<tr>
<td>ジョナゴールド</td>
<td>30</td>
<td>100</td>
<td>8.2</td>
</tr>
<tr>
<td>紅玉</td>
<td>30</td>
<td>96.7</td>
<td>17.6</td>
</tr>
<tr>
<td>ふじ</td>
<td>30</td>
<td>86.7</td>
<td>5.1</td>
</tr>
<tr>
<td>北斗</td>
<td>30</td>
<td>76.7</td>
<td>2.9</td>
</tr>
<tr>
<td>国光</td>
<td>30</td>
<td>70.0</td>
<td>3.6</td>
</tr>
<tr>
<td>スターキングデリシャス</td>
<td>30</td>
<td>60.0</td>
<td>1.7</td>
</tr>
</tbody>
</table>

2 県南果樹研究センター圃場。

および‘スターキングデリシャス’が低かった。1果当たりの平均病斑数は‘陸奥’および‘つがる’が‘紅玉’とはほぼ同等、‘ジョナゴールド’および‘ふじ’が少なく、‘北斗’、‘国光’および‘スターキングデリシャス’が著しく少なかった。

(2) 接種による発病

材料および方法

2002年および2003年に、それぞれ県南果樹研究センター内圃場の8品種およびりんご試験場神崎圃場（長野県松代町）の7品種を供試した。単子のうち22品種分離株No.22をPDA平板で培養して得た分生子から調製した懸濁液（5.8〜5.9×10^6個・ml、Tween20を0.02％添加）を接種液とした。2002年6月14日に小型噴霧器を用いて無菌果実に分生子懸濁液を噴霧接種し、9月2日に発病調査。また2003年7月14日に同様の方法で接種し、9月2日に発病調査。2002年および2003年のいずれも、供試果実は接種後1か月前にはハトロン紙袋で被覆し、接種直前に除袋し、接種を行った後再びハトロン紙袋で被覆した。各品種10果を供し、試験期間中の落下果実は調査から除いた。

結果

接種による1果当たりの発病状況は第41表および第42表に示した。

各品種の1果当たりの平均病斑数は‘紅玉’と比較した。

2002年供試したいずれの品種も発病した。1果当たりの平均病斑数は‘つがる’、‘未希ライフ’および‘ジョナゴールド’が‘紅玉’よりやや少なく、‘北斗’、‘千秋’、‘上林’および‘ふじ’が著しく少なかった。

2003年‘国光’を除き、供試したいずれの品種も発病した。1果当たりの平均病斑数は‘あおり13’が‘紅玉’と同等、‘ふじ’、‘あおり9’、‘金星’および‘スターキングデリシャス’が少なかった。

第41表 リンゴ黒点病接種による品種の発病状況（2002年）

<table>
<thead>
<tr>
<th>品種</th>
<th>接種</th>
<th>無接種</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>調査果数（個）</td>
<td>発病果数（個）</td>
</tr>
<tr>
<td>紅玉</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>つがる</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>未希ライフ</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>ジョナゴールド</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>北斗</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>千秋</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>上林</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>ふじ</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>

6月14日に単子のうち22品種分離株No.22の分生子懸濁液噴霧接種、9月2日発病調査。
第42表 リンゴ黒点病菌接種による品種の発病状況（2003年）

<table>
<thead>
<tr>
<th>品種</th>
<th>接種果数</th>
<th>発病果数</th>
<th>1果当たりの平均病斑数</th>
<th>無接種果数</th>
<th>発病果数</th>
<th>1果当たりの平均病斑数</th>
</tr>
</thead>
<tbody>
<tr>
<td>あおり13</td>
<td>10</td>
<td>10</td>
<td>14.1</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>紅玉</td>
<td>9</td>
<td>8</td>
<td>12.6</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ふじ</td>
<td>9</td>
<td>3</td>
<td>0.6</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>あおり9</td>
<td>2</td>
<td>2</td>
<td>0.6</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ステーキングドラムシャー</td>
<td>10</td>
<td>2</td>
<td>0.2</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>国光</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

＊7月14日早午の果子分離株No.22の生分牛懸液噴霧接種，9月2日発病調査。

2）共通宿主
リンゴ黒点病菌 Mycosphaerella pomi の宿主は，わが国ではリンゴ以外で明らかにされていない。
1990年に八戸市および福島県相馬郡南郷町の農家セイヨウナシ（Pyrus comminis L. var. sativa de Candolle）圃場の「ゼネラル・レクラーク」果実に黒色小黒点状が発生した。また，1999年に県南果樹研究センター圃場のニホンナシ（Pyrus spectabile Rehder var. canticus Rehder）「辛水」果実に，2000年には同センター内圃場のマルメロ（Cydonia oblonga Miller）「在来種」果実およびカリン（Chaenomeles sinensis Koehne）果実に黒色小黒点状が発生した。これら植物の果実の発病部からは，高い率に Cyclodosprium 属菌が検出された。さらに1999〜2002年の5月に，県南果樹研究センター内圃場においてこれら植物の越冬期果実上に Mycosphaerella 属菌の偽の果実状を観察し，病原菌はいずれもリンゴ黒点病菌と同一であることを明らかにした。本項では各植物における病徵と，病原菌の形態，培養性状，交互接種試験などについて記述する。

（1）各種宿主における病徵
a）セイヨウナシ
1998〜2000年の3か年間にわたり，県南果樹研究センター内圃場の「ゼネラル・レクラーク」および「ラ・フランス」で，果実と葉の自然発病病状を調査した。果実は，7月上中旬から果実を中心とした黒色の小黒点病状が生じ，この病葉は収穫期ころ（セネラル・レクラーク：9月中旬，ラ・フランス：10月中旬）には大きさ 0.5〜3 mm の正円形，紫褐色〜黒褐色の病斑を生じ，しばしば癒合して大型の病斑となり，時に赤褐色の壊死を伴っていた。病斑は葉脈に多い傾向であった。罹病葉はやがて癒合し落下した（国図12C，D）。なお「ゼネラル・レクラーク」および「ラ・フランス」のほか，「シルバーベル」，「パーゴレット」，「フレッシュ・ピューティ」，「プレミオ」でも発生を確認している。
b）ニホンナシ
2000年に，県南果樹研究センター内圃場の「辛水」で，果実の自然発病病状を調査した。7月下旬から果実を中心とした果点大，黒色の小黒点病状が生じ，収穫期の9月中旬には果点大，黒褐色病状となった（国図14A）。罹病果実はいずれも癒合していたが，この部分から腐敗することはなかった。なお葉の発病はみられなかった。
c）マルメロ
2001年および2002年に，県南果樹研究センター内圃場のマルメロ「在来種」で，果実と葉の自然発病病徵を調査した。果実では，7月下旬から果実大，黒色の小黒点病状が生じ，やがてこれらの癒合し，収穫期の10月中旬には大きさ 1〜5 mm のやや門かった不整形，暗緑色病状となった（国図13A，B）。罹病果実の果肉は癒合していなかったが，この部分から腐敗することはなかった。葉では，8月中旬から大きさ 1〜6 mm の不整形，紫褐色〜黒褐色の病斑を生じ，しばしば癒合して大型の病斑となった（国図13C）。11月中旬には葉脈に同された 1〜3 mm の角形，紫褐色病斑がみられた。罹病葉はやがて黒化し落下した。なお「在来種」のほか，「スミルナ」および「オカリ」でも発生を確認している。
d）カリン
2003年に，県南果樹研究センター内圃場で，果実の自然発病病徵を調査した。7月下旬から果実を中心とした果点大，黒色の小黒点病状が生じ，収穫期の11月中旬には大きさ 0.5〜2 mm の暗緑色病斑となった（国図14D）。
病葉部の果肉はわずかに褐変していたが、この部分から腐敗することはなかった。なお葉の発病はみられなかった。

(2) 各種宿主からの分離菌

材料および方法

県庁果树研究センター内栽場のセイヨウナシ、ニホンナシ、マルメロおよびカリシリン果実の病斑部を 3 mm 角に切り取り、70%エタノールに 5 秒間浸して乾燥後、次に塩酸トリリウム溶液（有効塩素含有 1%）で 10 秒間表面殺菌した。さらに滅菌水で 2 回洗浄し、クリーンベンチ内で滅菌し精に並べ 30 〜 60 分間通風して風乾させた後、PDA 平面に植え付けた。20℃、暗黒下で培養後、菌糸上に生じた Cylindrosporium 型分生子塊を滅菌水に懸濁し、これを PDA 平面に塗布した。20℃、暗黒下で 21 日間培養後、発芽した分生子を顕微鏡下で単胞子分離し、分離菌を得た。またセイヨウナシ、ニホンナシ、マルメロおよびカリシリン落葉果上に生じた Mycosphaerella 属菌のう胞子から単胞子を単胞子分離し、分離菌を得た。

結果

各種植物からの分離菌とその由来は第 43 表に示した。

セイヨウナシ、ニホンナシ、マルメロおよびカリシリンのいずれの病斑部からも、高率に Cylindrosporium 属菌が分離された。また、越冬落葉果の傷子のう胞子に形成された単胞子の単胞子分離菌はすべて Cylindrosporium 属菌であった。

(3) 病原菌の培養性質

材料および方法

セイヨウナシ、ニホンナシ、マルメロおよびカリシリンの越冬落葉果からそれぞれ得た単胞子のう胞子分離菌 No.28, No.43, No.60 および No.70 を供試した。いずれも発芽直後の単胞子を移植源とし、PDA 平面の中央部に移植し、20℃の暗黒下で培養し培養性状を観察した。また供試分離株の菌糸生育温度を明らかにするため、PDA 平面の中央部に各分離株の発芽直後の単胞子を移植し、それぞれ 0 〜 35℃の暗黒下で 30 日間培養後、菌糸の直径を計測した。結果のため、リンゴ黒点病菌の単胞子のう胞子分離 No.22 を用いた。試験は 1 区 5 シャーレを用い、結果は平均値で示した。

結 果

いずれの分離株も PDA 平面、20℃、暗黒下で、はじめ暗褐色、湿性の菌糸を生じた。菌糸はやがて中央部にしわのある、黒色から黒色のフェルト状に変化した。

分離株 No.28、No.44、No.60 および No.70 における菌糸生育温度との関係は第 44 表に示した。菌糸生育は No.28、No.60 および No.70 が 0 〜 30℃、No.44 が 0 〜 25℃でみられ、適温はいずれの分離株も 20 〜 25℃であった。

(4) 病原菌の形態

材料および方法

県庁果树研究センター内栽場のセイヨウナシ、ニホンナシ、マルメロおよびカリシリンの越冬落葉果からの組織分離菌（No.13、No.32、No.33、No.47）および越冬落葉果から得た単胞子のう胞子分離菌（No.28、No.44、No.60、No.70）について、それぞれ PDA 培養により生じた分生子の形態を観察した。分生子の大きさはそれぞれ 50 個について計測した。

第43表 各種植物からの分離菌とその由来

<table>
<thead>
<tr>
<th>分離菌株</th>
<th>宿主植物</th>
<th>品種</th>
<th>分離源</th>
<th>分離月日</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.13</td>
<td>セイヨウナシ</td>
<td>ラ・フランス</td>
<td>果実病斑（組織分離）</td>
<td>1998.10</td>
</tr>
<tr>
<td>No.28</td>
<td></td>
<td></td>
<td>単胞子のう胞子</td>
<td>1999.5</td>
</tr>
<tr>
<td>No.30</td>
<td></td>
<td></td>
<td>単胞子のう胞子</td>
<td>1999.5</td>
</tr>
<tr>
<td>No.33</td>
<td>ニホンナシ</td>
<td>麦生</td>
<td>果実病斑（組織分離）</td>
<td>1999.7</td>
</tr>
<tr>
<td>No.43</td>
<td></td>
<td></td>
<td>単胞子のう胞子</td>
<td>2000.5</td>
</tr>
<tr>
<td>No.44</td>
<td></td>
<td></td>
<td>単胞子のう胞子</td>
<td>2000.5</td>
</tr>
<tr>
<td>No.47</td>
<td>マルメロ</td>
<td>在来種</td>
<td>果実病斑（組織分離）</td>
<td>2000.9</td>
</tr>
<tr>
<td>No.60</td>
<td></td>
<td></td>
<td>単胞子のう胞子</td>
<td>2001.5</td>
</tr>
<tr>
<td>No.61</td>
<td></td>
<td></td>
<td>単胞子のう胞子</td>
<td>2001.5</td>
</tr>
<tr>
<td>No.55</td>
<td>カリシリン</td>
<td></td>
<td>果実病斑（組織分離）</td>
<td>2000.10</td>
</tr>
<tr>
<td>No.70</td>
<td></td>
<td></td>
<td>単胞子のう胞子</td>
<td>2002.5</td>
</tr>
</tbody>
</table>

いずれも県庁果树研究センター内栽場から採取。
第41表 各種植物由来のMycosphaerella属菌のう胞子単胞子分離菌の生存と温度との関係

<table>
<thead>
<tr>
<th>温度 (℃)</th>
<th>セイヨウナシ 分離株No.28</th>
<th>ニホノナシ 分離株No.14</th>
<th>マルメロ 分離株No.60</th>
<th>カリん 分離株No.70</th>
<th>リンゴ 黒点病菌 No.22</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.7</td>
<td>0.9</td>
<td>0.9</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>5</td>
<td>2.9</td>
<td>3.3</td>
<td>4.1</td>
<td>4.8</td>
<td>2.7</td>
</tr>
<tr>
<td>10</td>
<td>9.6</td>
<td>9.2</td>
<td>8.4</td>
<td>8.1</td>
<td>9.3</td>
</tr>
<tr>
<td>15</td>
<td>15.6</td>
<td>15.3</td>
<td>14.1</td>
<td>9.0</td>
<td>16.6</td>
</tr>
<tr>
<td>20</td>
<td>24.7</td>
<td>25.9</td>
<td>35.6</td>
<td>15.0</td>
<td>29.4</td>
</tr>
<tr>
<td>25</td>
<td>26.4</td>
<td>27.2</td>
<td>38.2</td>
<td>25.8</td>
<td>33.1</td>
</tr>
<tr>
<td>30</td>
<td>8.2</td>
<td>0</td>
<td>4.6</td>
<td>9.7</td>
<td>18.3</td>
</tr>
<tr>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*PDA平板、暗黒下で30日間培養。

第45表 セイヨウナシ、ニホノナシ、マルメロおよびカリん越冬病菌落葉上に生じたMycosphaerella属菌のう胞子の著効世代の形態的特徴

<table>
<thead>
<tr>
<th>形態</th>
<th>セイヨウナシ (本研究)</th>
<th>ニホノナシ (本研究)</th>
<th>マルメロ (本研究)</th>
<th>カリん (本研究)</th>
<th>リンゴ (M. pomi; Walton and Orton,1926)</th>
</tr>
</thead>
<tbody>
<tr>
<td>長さ (μm)</td>
<td>60－125</td>
<td>63－110</td>
<td>33－105</td>
<td>67－123</td>
<td>63－115</td>
</tr>
<tr>
<td>高さ (μm)</td>
<td>60－123</td>
<td>33－113</td>
<td>60－125</td>
<td>79－125</td>
<td>60－108</td>
</tr>
<tr>
<td>形態</td>
<td>球形</td>
<td>球形</td>
<td>球形</td>
<td>球形</td>
<td>球形</td>
</tr>
<tr>
<td>色</td>
<td>黒色</td>
<td>黒色</td>
<td>黒色</td>
<td>黒色</td>
<td>黒色</td>
</tr>
<tr>
<td>大きさ (μm)</td>
<td>36－66×8－11</td>
<td>36－50×9－12</td>
<td>33－50×9－12</td>
<td>38－59×9－11</td>
<td>36－57×8－12</td>
</tr>
<tr>
<td>形態</td>
<td>円筒形</td>
<td>円筒形</td>
<td>円筒形</td>
<td>円筒形</td>
<td>円筒形</td>
</tr>
<tr>
<td>色</td>
<td>白色</td>
<td>白色</td>
<td>白色</td>
<td>白色</td>
<td>白色</td>
</tr>
<tr>
<td>大きさ (μm)</td>
<td>15－25×3－5</td>
<td>16－26×3－5</td>
<td>16－27×3－5</td>
<td>17－26×3－5</td>
<td>15－28×3－5</td>
</tr>
<tr>
<td>形態</td>
<td>長円筒形</td>
<td>長円筒形</td>
<td>長円筒形</td>
<td>長円筒形</td>
<td>長円筒形</td>
</tr>
<tr>
<td>細胞数</td>
<td>2胞</td>
<td>2胞</td>
<td>2胞</td>
<td>2胞</td>
<td>2胞</td>
</tr>
<tr>
<td>色</td>
<td>白色</td>
<td>白色</td>
<td>白色</td>
<td>白色</td>
<td>白色</td>
</tr>
</tbody>
</table>

結 果

セイヨウナシ、ニホノナシ、マルメロおよびカリん越冬病菌のう胞子の形態的特徴は第45表に示した。また分離菌の分生子の形態的特徴は第46表に示した。

いずれの植物においても、う胞子の大きさは葉の表面の表皮下に埋没して生じ、群生または単生、黒色、球形～卵球形、頂端に乳頭状の突起を有し、う胞子の大きさおよび大きさがそれぞれセイヨウナシが60－125μm、60－125μm、ニホノナシが63－110μm、53－113μm、マルメロが53－105μm、60－125μm、カリんが67－123μm、79－125μmであった。う胞子の大きさより更に、円筒形～卵形、二重壁で、子のうの大きさはセイヨウナシが36－66×8－11μm、ニホノナシが36－59×9－12μm、マルメロが33－59×8－12μm、カリんが38－59×9－11μm、いずれも8個の子のう胞子を有していた。子のう胞子は、不規則形2列に並んで生じ、長さ衣達形～紡錘形、まっすぐやや曲曲曲、2細胞、隔膜部分わずかにくびれ、無色で、大きさはセイヨウナシが15－25×3－5μm、ニホノナシが16－26×3－5μm、マルメロが16－27×3－5μm、カリんが17－26×3－4.5μmであった（図版15A、C、E、F、H、J、L、M）。

分離菌の分生子はいずれもCylindrosporum型、無色、単細胞～円筒形、まっすぐ～曲曲曲曲であり、0－7隔膜が
第46表 各種植物からの分離菌Cylindrosporum型子分生の形態的特徴

<table>
<thead>
<tr>
<th>分離宿主</th>
<th>霉株</th>
<th>分 生 子</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>大きさ（μm）</td>
</tr>
<tr>
<td>セイヨウナシ</td>
<td>No. 13</td>
<td>12-83×15-3</td>
</tr>
<tr>
<td></td>
<td>No. 23</td>
<td>12-74×15-3</td>
</tr>
<tr>
<td>ニホンナシ</td>
<td>No. 33</td>
<td>12-83×25-4</td>
</tr>
<tr>
<td></td>
<td>No. 44</td>
<td>12-76×2-4</td>
</tr>
<tr>
<td>マルメロ</td>
<td>No. 47</td>
<td>11-83×2-3.5</td>
</tr>
<tr>
<td></td>
<td>No. 60</td>
<td>12-87×15-4</td>
</tr>
<tr>
<td>カリン</td>
<td>No. 55</td>
<td>8-76×2-4</td>
</tr>
<tr>
<td></td>
<td>No. 70</td>
<td>12-61×2-3</td>
</tr>
</tbody>
</table>

* PDA培地、20℃、暗黒下で5～7日間培養。
* 果実病部からの組織分離菌。
* 單子のうち胞子分離菌。

は0～6隔壁。大きさが8～87×15～4μmの範囲内であった（図版15D、G、K、N）。

以上の結果から、セイヨウナシ、ニホンナシ、マルメロおよびカリン上に生じた病原菌はいずれもMycosphaerella poni（Pass.）Lindau（ア ナ モ ル フ:
Cylindrosporum poni C. Brooks）と同定した。

（5）交互接種試験

材料および方法

各種植物から分離されたM. poni菌株の病原性を確認するため、果実では県農業研究センター内圃場で接種試験を行い、葉では鉱鉄培養を用いて接種試験を行った。いずれもPDA培地により生じた分生子から調製した懸濁液（Twenc20を0.02%添加）を接種源とした。

a. セイヨウナシ分離菌

果実：2000年6月14、15日、セイヨウナシ胞子のうち胞子分離株No.28の分生子懸濁液（5×104個/ml）を「ゼネラル・レクラーク」および「ラ・フランス」の無傷果実に小創噴霧器を用いて噴霧接種した。またリンゴに対する病原性も確認するため、「ぶじ」の無傷果実にも分生子懸濁液を噴霧接種した。セイヨウナシは8月29日、リンゴは9月18日にそれぞれ発病調査した。対照のセイヨウナシおよびリンゴ果実は有生子懸濁液の代わりに減菌水を噴霧した。さらに2000年6月21日、セイヨウナシ果実に対するリンゴ黒点病菌の病原性を確認するため、リンゴ黒点病菌の胞子のうち胞子分離株No.22の分生子懸濁液（5×104個/ml）を「ゼネラル・レクラーク」果実に前述の方法で噴霧接種し、8月29日に発病調査した。

b. ニホンナシ分離菌

果実：2000年6月15日、ニホンナシ胞子のうち胞子分離株No.44の分生子懸濁液（5×104個/ml）を「辛水」の無傷果実に小創噴霧器を用いて噴霧接種した。またリンゴに対する病原性も確認するため、「ぶじ」の無傷果実にも分生子懸濁液を噴霧接種した。ニホンナシは8月31日、リンゴは9月18日にそれぞれ発病調査した。対照のニホンナシおよびリンゴ果実は減菌水を噴霧した。さらに2000年6月15日、ニホンナシ果実に対するリンゴ黒点病菌の病原性を確認するため、リンゴ黒点病菌No.22の分生子懸濁液（5×104個/ml）を「辛水」果実に噴霧接種し、8月31日に発病調査した。

葉：単子のうち胞子分離株No.43およびNo.44の分生子懸濁液（5×104個/ml）を1対1の割合で混ぜて接種源とした。接種植物には鉱鉄培養を用いて「辛水」を2個用いた。2000年7月4日、葉の当年枝を1枝残して剪去し、各枝の全葉を発病面に分生子懸濁液を噴霧接種した。鉱は20～21℃の温室内で72時間保ち、その後は無加温のガラス温室に移し観察した。対照の葉には減菌水を噴霧した。
第7表 セイヨウナシ分離株（甲子のう胞子分離株No.28）およびリンゴ黒点病菌（甲子のう胞子分離株No.22）のセイヨウナシおよびリンゴ果実に対する病原性

<table>
<thead>
<tr>
<th>接種植物</th>
<th>接種菌株</th>
<th>供試果数</th>
<th>発病果数</th>
<th>1果当たりの平均病斑数</th>
</tr>
</thead>
<tbody>
<tr>
<td>セイヨウナシ</td>
<td>No. 28</td>
<td>10</td>
<td>10</td>
<td>149.0</td>
</tr>
<tr>
<td>（トウモロコシレクリ）</td>
<td>No. 22</td>
<td>8</td>
<td>8</td>
<td>289.8</td>
</tr>
<tr>
<td>無接種</td>
<td>9</td>
<td>1</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>セイヨウナシ</td>
<td>No. 28</td>
<td>9</td>
<td>9</td>
<td>278.6</td>
</tr>
<tr>
<td>（ラ・フランス）</td>
<td>無接種</td>
<td>10</td>
<td>7</td>
<td>35</td>
</tr>
<tr>
<td>リンゴ</td>
<td>No. 28</td>
<td>9</td>
<td>9</td>
<td>95.2</td>
</tr>
<tr>
<td>（ふじ）</td>
<td>No. 22</td>
<td>10</td>
<td>10</td>
<td>51.1</td>
</tr>
<tr>
<td>無接種</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

2000年6月14～21日に分生子懸濁液噴霧接種で、検定は同年8月29日。リンゴは同年9月18日発病調査。

c. マルメロ分離菌

果実：2001年6月15日、マルメロ苗甲子のう胞子分離株No.60の分生子懸濁液（5×10^5個/ml）を接種源として、在来種の無傷果実に小型噴霧器を用いて噴霧接種した。またリンゴに対する病原性も確認するため、ふじの無傷果実に分生子懸濁液を噴霧接種した。さらにマルメロ果実に対するリンゴ黒点病菌の病原性を確認するため、リンゴ黒点病菌No.22の分生子懸濁液（5×10^5個/ml）を在来種果実に噴霧接種した。マルメロは8月21日。リンゴ8月22日にそれぞれ発病調査した。対照のマルメロおよびリンゴ果実は減菌水を噴霧した。

葉：甲子の胞子分離株No.60およびNo.61の分生子懸濁液（1×10^5個/ml）を10倍の割合で混合して接種源とした。2001年6月13日。鉄鉢植え甲子の在来種2株の葉の表面を5分間に分生子懸濁液を噴霧接種した。鉄鉢植え甲子の在来種は20～21℃の温度下で96時間保ち、その後は無加湿のガラス温室に移し観察した。

対照の葉には減菌水を噴霧した。

d. カリ分離菌

2002年6月14日、カリ苗甲子の胞子分離株No.70の分生子懸濁液（5×10^5個/ml）を接種源とし、無傷のカリ果実に小型噴霧器を用いて噴霧接種した。またリンゴに対する病原性も確認するため、ふじの無傷果実に分生子懸濁液を噴霧接種した。さらにカリ果実に対するリンゴ黒点病菌の病原性を確認するため、リンゴ黒点病菌No.22の分生子懸濁液（5×10^5個/ml）をカリ果実に噴霧接種した。カリは9月5日、リンゴ9月2日にそれぞれ発病調査した。対照のカリおよびリンゴ果実には減菌水を噴霧した。

なお、供試したセイヨウナシ、ニホンナシ、マルメロおよびカリ果実のいずれも、なるべく自然発病を避けため、接種後2週間×20日にパトロン紙袋で被覆し、接種箇所に除袋し、接種を行った後再びパトロン紙袋で被覆した。セイヨウナシ、ニホンナシではそれぞれ10枚、マルメロでは5枚、カリでは6枚を供試し、試験期間中の落下果実は調査から除いた。

結果

a. セイヨウナシ分離菌

セイヨウナシ甲子の胞子分離株No.28およびリンゴ黒点病菌No.22のセイヨウナシおよびリンゴ果実に対する病原性は第7表に示した。

単子の胞子分離株No.28を接種したセイヨウナシ・ゼネラル・レクリーク（図版12F）および「ラ・フランス」果実は自然発病と同様の黒色小斑点を生じ、またリンゴ「ふじ」果実はリンゴ黒点病を生じた。リンゴ黒点病菌No.22を接種した「ゼネラル・レクリーク」果実は小斑点を生じた。これらセイヨウナシおよびリンゴ果実の接種病斑数は、接種菌と同様のCylindrosporum屬菌が高率に再分離された。なお、減菌水を噴霧した対照の果実でもわずかに発病がみられた。しかし1果当たりの平均病斑数は発病果数が多かった「ラ・フランス」においても、接種区（分離株No.28）の278.6に対して3.5にとどまった。

単子の胞子分離株No.28とNo.30を接種した鉄鉢植えの「ラ・フランス」の葉は、接種後3か月後に自然発病と同様の不規則・黒色小斑点が生じた（図版12G）。接種病斑数から接種菌と同様のCylindrosporum屬菌が高率に再分離された。なお減菌水を噴霧した対照の葉では、発病はみられなかった。

b. ニホンナシ分離菌
第48表 ニホンナシ分離菌（単子の胞子分離株No.44）およびリンゴ黒点病菌（単子の胞子分離株No.22）のニホンナシおよびリンゴ果実に対する病原性

<table>
<thead>
<tr>
<th>接種植物</th>
<th>接種菌株</th>
<th>供試果数（個）</th>
<th>発病果数（個）</th>
<th>1果当たりの平均病斑数</th>
</tr>
</thead>
<tbody>
<tr>
<td>ニホンナシ</td>
<td>No. 44</td>
<td>10</td>
<td>10</td>
<td>8.5</td>
</tr>
<tr>
<td>（幸水）</td>
<td>No. 22</td>
<td>9</td>
<td>7</td>
<td>1.4</td>
</tr>
<tr>
<td>一般菌株</td>
<td>No. 22</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

2000年6月15日分生子懸滴液噴霧接種。ニホンナシは同年8月31日、リンゴは同年9月18日発病調査。

第49表 マルメロ分離菌（単子の胞子分離株No.60）およびリンゴ黒点病菌（単子の胞子分離株No.22）のマルメロおよびリンゴ果実に対する病原性

<table>
<thead>
<tr>
<th>接種植物</th>
<th>接種菌株</th>
<th>供試果数（個）</th>
<th>発病果数（個）</th>
</tr>
</thead>
<tbody>
<tr>
<td>マルメロ</td>
<td>No. 60</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>（在来種）</td>
<td>No. 22</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>一般菌株</td>
<td>No. 22</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

2001年6月15日分生子懸滴液噴霧接種。同年8月21日発病調査。

ニホンナシ単子の胞子分離株No.44およびリンゴ黒点病菌No.22のニホンナシおよびリンゴ果実に対する病原性は第48表に示した。

ニホンナシ単子の胞子分離株No.41を接種したニホンナシ‘幸水’果実は自然発病と同様の黒色小斑点を生じ（図版14C）、またリンゴ‘ふじ’果実はリンゴ黒点病を生じ、リンゴ黒点病菌No.22を接種したニホンナシ‘幸水’果実は黒色小斑点を生じ、これらニホンナシおよびリンゴ果実の接種病果部からは、それぞれ接種菌と同様のCylindrosporum属菌が高率に再分離された。なお減菌水を噴霧した対照のニホンナシおよびリンゴ果実はいずれも発病はみられなかった。

単子の胞子分離株No.43とNo.14を接種した鉄植え‘幸水’の葉の発病は、自然落葉時（11月）においても観察されなかった。しかし接種後3か月後の10月5日に接種葉2葉から無作為に切り取った2、3mm角の葉片からは、低率（供試15葉片のうちの1葉片）であるが接種菌と同様のCylindrosporum属菌が分離された。

c. マルメロ分離菌

マルメロ単子の胞子分離株No.60およびリンゴ黒点病菌No.22のマルメロおよびリンゴ果実に対する病原性は第49表に示した。

マルメロ単子の胞子分離株No.60を接種したマルメロ‘在来種’果実は自然発病と同様の黒色小斑点を生じ（図版13E）、またリンゴ‘ふじ’果実はリンゴ黒点病を生じ、リンゴ黒点病菌No.22を接種したマルメロ‘在来種’果実は黒色小斑点を生じ、これらマルメロおよびリンゴ果実の接種病果部からは、それぞれ接種菌と同様のCylindrosporum属菌が高率に再分離された。なお減菌水を噴霧した対照のマルメロおよびリンゴ果実では、いずれも発病はみられなかった。

単子の胞子分離株No.60とNo.61を接種した鉄植えの‘在来種’の葉は、接種後5か月後に自然発病と同様の不正形、紫褐色病斑を生じた（図版13F）、接種病葉部
第50表 カリん分離菌（単子のう胞子分離株No.70）およびリンゴ黑点病菌（単子のう胞子分離株No.22）のカリんおよびリンゴ果実に対する病原性

<table>
<thead>
<tr>
<th>接種植物 (品種)</th>
<th>接種胞子</th>
<th>供試果数 (個)</th>
<th>発病果数 (個)</th>
<th>1果当たりの平均病度数</th>
</tr>
</thead>
<tbody>
<tr>
<td>カリん</td>
<td>No. 70</td>
<td>6</td>
<td>6</td>
<td>57.3</td>
</tr>
<tr>
<td></td>
<td>No. 22</td>
<td>6</td>
<td>3</td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td>無接種</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>リンゴ (ぶじ)</td>
<td>No. 70</td>
<td>9</td>
<td>9</td>
<td>12.8</td>
</tr>
<tr>
<td></td>
<td>No. 22</td>
<td>10</td>
<td>8</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>無接種</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

2002年6月14日分生子懸濁液噴霧接種、同年9月2〜5日発病調査。

からは接種菌と同様の Cylindrosporium 属菌が高率に再分離された。なお減菌水を噴霧した対照果の葉では、発病はみられなかった。

d. カリん分離菌

カリん単子のう胞子分離株 No.70 およびリンゴ黒点病菌 No.22 のカリんおよびリンゴ果実に対する病原性は第50表に示した。

カリん単子のう胞子分離株 No.70 を接種したカリん果実は自然発病と同様の黒色小斑点を生じ（図版11F）。またリンゴ「ぶじ」果実はリンゴ黒点病を生じた。リンゴ黒点病菌 No.22 を接種したカリん果実は黒色小斑点を生じた。これらカリんおよびリンゴ果実の接種部からのそれぞれ接種菌と同様の Cylindrosporium 属菌が高率に再分離された。なお減菌水を噴霧した対照のカリんおよびリンゴ果実は、いずれも発病はみられなかった。

(6) セイヨウナシ越冬罹病落葉からの Mycosphaerella pomi 子のう胞子飛散消長

セイヨウナシ、ニホンナシ、マルメロおよびカリんは M. pomi の共通宿主であり、越冬した罹病落葉（図版12E、13D、14B、E）上に生じる子のう胞子はリンゴ黒点病の伝染源として働くものと推測される。特に青森県では、セイヨウナシは2003年からの桜落葉面積が169 ha で（東北農政局青森統計・情報センター、2004）、県にうつって産地である。そこでセイヨウナシについて、越冬罹病落葉からの子のう胞子飛散消長を調査し、リンゴ黒点病の伝染源としての重要性を検討した。

材料および方法

リンゴ越冬罹病落葉を供試して子のう胞子飛散消長を調査した同様の方法（第4 - 3）子のう胞子の飛散）で、セイヨウナシ越冬罹病落葉からの子のう胞子の飛散消長を調査した。すなわち、1999年11月、県南果樹研究所センター内圃場において、幅30 cm、長さ60 cm、高さ50 cmの本枠内にセイヨウナシ「ゼネラル・レッカーク」罹病落葉を均一に敷き詰めて越冬させ、翌2000年4月4日から7月6日まで、クリセリンゼリーを塗布したスライドグラスを、塗布面を上にして本枠内の高さ10 cmの位置に2枚設置し、子のう胞子を捕集した。スライドグラスの交換は1〜3日ごとに午前9時に行った。スライドグラスにアクリルプルー・ラクトフェノール液を滴下、子のう胞子を染色後、18 × 18 mm カバーブラスの範囲にある子のう胞子数を光学顕微鏡を用いて計数した。捕集数は2枚の合計とした。

結果

セイヨウナシ越冬罹病落葉からの子のう胞子の飛散消長は第10図に示した。
子のウソブシは4月6半頃から7月4半頃まで捕獲され、
捕獲最盛期は5月3半頃であった。捕摘した子のウソブシ
数の合計は3,386個であった。

3）考察

リンゴ果穂の感受性：リンゴ果穂に対し感受性の
高い品種の一つとして、古くから「紅富士」が知られている
（浦、1915a; 浦、1916a; 豊、1968; 番谷、
1997）。そこで「紅富士」を基準品種として、果穂に対す
各品種の感受性程度を評価した。

果穂における自然発病調査では、総て「lösom」およ
び「つがる」の発病程度は「紅富士」より高く、「ジョナガ
ルド」がほぼ同等、「王林」、「ふじ」および「北里」が低く、
「国花」および「スターキング」は著しく低くと
評価された。病原菌の果穂接種条件下の発病程度は「つ
がる」および「未熟タイプ」が「紅富士」よりやや高く。「ジョ
ナガルド」が低く、「あお里」、「金星」、「スターキング
デンリシャ」、「国花」、「北里」、「千秋」、「王林」およ
び「ふじ」が著しく低いと評価された。

したがって、果穂における自然発病調査および人工接
種による発病調査の結果から、感受性程度は「降奥」、
「つがる」、「ジョナガルド」およびあお里が「紅富士」を
と同等～やや高く、「王林」、「ふじ」および「北里」が「紅富士」より低く、「国花」および「スターキング
デンリシャ」は「紅富士」よりも著しく低いと考えられる。
「千秋」、「あお里」と「金星」は概ね「ふじ」程度であると考えられる。

以上のように、黒果病感受性に顕著な品種間差異が認
められる原因として、「V - 6 - 3」果穂の感受性移行」と
同様に、各品種の果穂部の構造的相違によることが考
えられる。この点に関しては今後の検討課題としたい。

共宿生物：八ヶ市およびびわ湖名古屋のセイヨウシ
ウナギ場において、果穂に黒果病症状を生じた病害が発
生した。また県内果樹研究センター内果穂のニホンウ
ナガルドおよびラインウナガルドにおいて、黒果病の果
穂部を生じた。これら病害が発生した果穂部から採取し
た罹果病果穂上に生じた菌のう頭子、そのうちとくにう
頭子の形態的特徴は、いずれもWalton and Orton（1926）
によるMycosphaerella poniの記載と一致した。また
一部の植物由来の子のう頭子分離株（No.28, No.44,
No.60およびNo.70）および果穂病果穂組織分離株（No.13,
No.33, No.47およびNo.55）も、PDA培養により
Cylindrosporum型発生子を生じた。これらの分離株の
大きさおよび増殖数はBrooks and Black（1912）および
浦（1915）によるCylindrosporum poniの記載と一致した。
したがって本菌をMycosphaerella poni（Pass.）Lindau（ア
ナリュフ：Cylindrosporum C. Brooks）と同定した。

接種試験で、セイヨウシウナガルドのう頭子分離株No.28
はセイヨウシウナガルド中にニホンシウナagaルドのう頭子
分離株No.44はニホンシウナガルド中に、マルメロシウナガ
ルドのう頭子分離株No.60はマルメロ果穂中に、およびカリン
シウナガルドのう頭子分離株No.70はカリン果穂中にそれぞれ自然発病と
同様の黒果病症状を生じさせた。またこれら分離株のい
ずれもリンゴ果穂にリンゴ果穂病を生じさせた。一方
リンゴ果穂病No.22もセイヨウシウナガルド、ニホンシウナガ
ルドおよびカリンのいずれの果穂にも黒果病症状を生じ
させた。これら果穂の接種病葉部からはそれぞれ接種菌と
同様のCylindrosporum属菌が生育して分離された。した
がってセイヨウシウナガルド、ニホンシウナガルド、マルメロ
およびリンゴはM. pomiの共宿生物であると結論される。
なお減菌水を噴霧した対照果穂ではセイヨウシウナガルド
の発病が認められたが、これは試験圃場でのリンゴ果
穂病の多発圃場であることから、自然発病によるものと考えられる。

各品種の原宿主果穂への接種では、セイヨウシウナガルド
およびマルメロの場合自然発病と同様の不整形、紫褐色斑点
が生じたが、ニホンシウナガルドにおいては発病が認められな
かった。しかしニホンシウナガルド以外の接種果穂同様の
Cylindrosporum属菌が分離された。また無防除のニホンシ
ウナガルド「水期」果穂において発病はまったく観察できな
かったが、越冬後に偽子のう頭を生じる落葉を容易に
みつけたことができた。さらに落葉間にない無防病の
果穂を野外で越冬させたところ、翌年成熟した偽子のう頭
を生じた（試験結果、省略）。これらのことから、M. pomi
はニホンシウナガルドに侵入後、無防病のまま果穂の組織内
に生存していたと考えられる。感染後に発生した宿主組織内で
生育が抑制される段階、あるいは無防病のままの宿主の
組織内に潜在的に存在する段階があり、宿主の自然老化
あるいは壊死が始まったとき宿主果穂組織で顕著化するこ
とにより特徴づけられる菌は一般に内生態菌（endophytic
fungi）と呼ばれている（Stone and Petrini, 1997）。したがっ
てニホンシウナガルドにおいては、M. pomiは内生態菌として存
在すると考えられる。なおMycosphaerella属菌の同様の例
として、ブナ（Fagus crenata）の内生態菌Mycosphaerella
humaが報告されている（Kaneko and Kakishima, 2001）。

カリン原株は分離菌の接種による発病の検証は行わな
かった。カリン果穂の病状に関してはblotchとする記載
(Farr et al, 1989)があるが、果穂観察ではカリン果穂に
黒果症状が発生した樹においても病の発病はまったく認め
なかった。今後、分離菌の接種による病気発現の有無を確認する
必要がある。

セイヨウシウナガルド、ニホンシウナガルドおよびカリン
のいずれにおいても、越冬病果穂落葉の斑点上には多数の偽
子のう頭がみられ、これらの子のう頭子はリンゴ果穂病
をはじめ共通宿主の黒果症状の伝播源として発病に強く
関与していることが予想される。そこで2000年、セイヨ
ウナシ越冬罹病葉落を供し、リング越冬罹病葉落を行った方法、観察の方法で子の卵子の飛散数を測定した結果、セイヨウナシ越冬罹病葉落葉子の子の卵子の飛散数はリング越冬罹病葉落葉子の子の卵子の飛散数を観察した（2000年）とほぼ同様であった。また捕獲した卵子数は、同様の規模の伝染源（越冬罹病葉落）量でリング越冬罹病葉落の捕獲数の1.8倍（セイヨウナシ：3386個、リング：1853個）であった。したがって、セイヨウナシ越冬罹病葉落葉子リング越冬罹病葉落葉子には多量の卵子が飛散させた。リング黒点病およびセイヨウナシ黒点病の発病に大きく関わっているものと推定される。ニホンナシ、マルメロおよびカリリンの越冬罹病葉落の病斑上にもセイヨウナシ越冬罹病葉落葉子に多数の卵子の卵巣が観察されるので、これらの越冬罹病葉落リリング黒点病および各種果樹の黒点病の伝染源として重要であると考えられる。

吉野県における2003年のセイヨウナシ栽培面積は169haであり、観察は冬として南部地方に行われた。南部地方ではリング栽培面積が約2200haあり、リング園場をセイヨウナシ園場と対比することが多い。南部地方のセイヨウナシ園場においては、病状の発現を相対的に明確に見つけやすくなる。このことから、セイヨウナシ黒点病状がM. pomiによる病害であることが明らかにされる以前から、セイヨウナシ園場で発生する稚虫の病原菌密度が低すぎてきたことが推定される。南部地方では、これまでたびたびリング黒点病が発生してきたが（荒谷ら、1997；藤田ら、1989）。この多発要因の一つとして、セイヨウナシ園場がリング黒点病の発生源となっていることが考えられる。

第11図 リンゴ黒点病菌の生活環
防除法

青森県リノゴ病害虫防除措置は1970～1980年代、リノゴの落花期から落花30日後頃までの防除は黑星病を主対象として、「落花直後」、「落花10日後頃」、「落花20日後頃」および「落花30日後頃」にそれぞれ薬剤散布する防除体系が取られ、黒星病、黒点病無病、赤星病、うどん病なども同時に防除が行われた。その結果、黒点病はほとんど発生がなく経過した。

1980年代、ステロール誘発メチル化阻害剤（DMI剤）は黒星病に対して効果的（保護効果）に加え、治療効果、すなわち感染成立後の散布による発病阻止効果があることから、その利用法が検討され（中澤・福島, 1990）、また既点薬剤、うどん病、赤星病などにも有効であることが確認された。このことから、青森県では1987年にDMI剤2剤、すなわちトリフルメゾール水和剤（商品名:トリフメール水和剤）およびピテラタール水和剤（商品名:ピテラコール水和剤）を「ふじの落花直後（以下、「ふじ」を略）」の散布薬剤として採用し、黒星病の防除をより確実にした。しかし、これらのDMI剤は黒点病に対する効果が低かったので、1988年、「落花10日後頃」または「落花20日後頃」にDMI剤を散布した薬剤で黒点病が発生し、一部では多発した薬剤もみられた（藤本ら, 1989）。

またDMI混合剤、すなわちDMI剤とジラム・チウラム剤の混合剤を使用することにより、「落花10日後頃」と「落花20日後頃」の散布を「落花15日後頃」に統合し、散布回数を1回削減できることが明らかとなった。そこで1996年に「落花直後」および「落花15日後頃」の散布薬剤としてDMI混合剤3剤、すなわちジラム・チウラム・フェナリモール水和剤（商品名:スベックス水和剤）、ジラム・チウラム・ピレタタール水和剤（商品名:ピラッカ水和剤）およびジラム・チウラム・ピレノックス水和剤（商品名:フォルトルド）を採用し、散布回数を1回削減した（藤本, 1998）。しかし、DMI混合剤による散布回数を削減した防除体系を採用した1996年、津軽地方では一部であったが、南部地方では多くのリノゴ園地で病害が多発した。詳細な調査の結果、南部地方では6月上旬から7月上旬まで（落花20日後頃から40日後頃まで）の期間に、降水量および降雨日数が過去20年間のなかもっとも多く、本病の発生に極めて良好な条件となり、このような気象条件のなかで6月中旬の散布（DMI混合剤散布）と次の散布までの間隔を13日以上にあけた園地で多発したことが明らかとなった（藤谷ら, 1997）。このため1997年以降、南部地方では1995年までの防除体系、すなわち「落花10日後頃」と「落花20日後頃」にそれぞれ薬剤散布することで、津軽地方よりも1回散布回数が多い防除体系が採用されてきた。

近年環境保全の面から、できるだけ農薬の投下量を少なくする病害虫防除技術が求められている（行本, 1992：梅本, 2002）。そこで、南部地方のように黒点病の発生が多い地域においても、津軽地方と同様に「落花10日後頃」と「落花20日後頃」の散布を「落花15日後頃」に統合し、散布回数を1回削減した防除体系を確立することを目標として研究を実施した。

1. 有効薬剤の検索

黒点病のもっとも重要な防除剤であるリノゴの薬剤の採用は、落花30日後頃まで、黒星病、うどん病、赤星病などの重症防除剤である。したがって有効薬剤の検索では、黒点病だけでなく、黒星病、うどん病、赤星病などを考慮する必要がある。黒点病の発生の少ない津軽地方では、1996年以降、「落花直後」および「落花15日後頃」にDMI混合剤を使用する防除体系が取られ、この体系は黒星病を防除主体として、黒点病も、うどん病、赤星病も防除対象としている。そこで1999年現在、青森県で採用のDMI混合剤について、黒点病に対し

なお、青森県ではDMI混合剤は1996年においてジラム・チウラム剤との混合剤だけであったが、1997年以降にマンゼプ剤との混合剤も採用した。

材料および方法

第51表に示したDMI混合剤6剤を供試し、県南果樹研究センター内薬剤で試験を行った。これら薬剤のうち南部地方で黒点病が多発した1996年に採用されていたDMI混合剤、すなわちジラム・チウラム・フェナリモール水和剤、ジラム・チウラム・ピレタタール水和剤およびジラム・チウラム・ピレノックス水和剤を対照薬剤とし、ジェノコサゾール・マンゼプ水和剤（商品名：スコアMZ水和剤）、イミベンゾコサゾール・マンゼプ水和剤（商品名：マネージM水和剤）およびマンゼプ・ミクロプチル水和剤（商品名：プロダーウ水和剤）の残効性を検討した。なお供試果樹には葉剤（商品名：ジリノール、5,000倍）を添加した。

試験1：2000年6月6日、ジェノコサゾール・マンゼプ水和剤500倍、イミベンゾコサゾール・マンゼプ水和剤600倍およびマンゼプ・ミクロプチル水和剤500倍を小型噴雾器を用いて、それぞれ「つがる」（M25台21年生）果樹に散布した。散布15日後に、単子のう形態分離株No.22をPDA平面で発芽を得た生分生子懸濁液（3.3×10^7個／ml、Tween20を0.02%添加）を小型噴霧器を用いて懸濁液接種し、8月22日に発病調査した。
第51表 リンゴ黒点病防除試験供試薬剤（DMI混合剤）

<table>
<thead>
<tr>
<th>薬剤 （商品名）</th>
<th>希釈倍数（倍）</th>
<th>有効成分と濃度（ppm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>ジフェノコナゾール・マンゼプ水和剤 （スコアMZ水和剤）</td>
<td>500</td>
<td>ジフェノコナゾール<sup>2</sup> 25
マンゼプ 1250</td>
</tr>
<tr>
<td>イミベンコナゾール・マンゼプ水和剤 （マネージM水和剤）</td>
<td>600</td>
<td>イミベンコナゾール<sup>2</sup> 50
マンゼプ 1083</td>
</tr>
<tr>
<td>マンゼプ・ミクロブタニール水和剤 （ブローダ水和剤）</td>
<td>500</td>
<td>マンゼプ 1300
ミクロブタニール<sup>2</sup> 40</td>
</tr>
<tr>
<td>ジラム・チウラム・フェナリモル水和剤 （スペックス水和剤）</td>
<td>600</td>
<td>ジラム 833
チウラム 500
フェナリモル<sup>2</sup> 30</td>
</tr>
<tr>
<td>ジラム・チウラム・ビテルタニール水和剤 （ホシカット水和剤）</td>
<td>600</td>
<td>ジラム 666.7
チウラム 400
ビテルタニール<sup>2</sup> 66.7</td>
</tr>
<tr>
<td>ジラム・チウラム・ビルフェノックス水和剤 （フルトップDF）</td>
<td>750</td>
<td>ジラム 500
チウラム 300
ビルフェノックス<sup>2</sup> 26.7</td>
</tr>
</tbody>
</table>

²DMI成分。

試験2：2001年6月4日、ジフェノコナゾール・マンゼプ水和剤500倍を小型散布器を用いて、それぞれ「つける（M:26）」22年生樹果を散布した。散布15日後に、木のうの侵害分離株No.22をPDA平面で培養して得られた子実採取（5.2×10⁵個/ml、Tween20を0.02%添加）を用いて接種し、8月21日に発病調査した。なお、試験1および試験2のいずれも、供試果実は自然発病を避けるため、何らかの装置で被覆し、薬剤散布の直前に除被し、散布後から接種までの15日間は果実を露出させ、接種後10日間は薬剤を用いて被覆した。各区10果を供し、試験期間中の薬剤は調査を除いた。殺菌剤無散布区は薬剤の代わりに水を散布した。

結果

試験1：ジフェノコナゾール・マンゼプ水和剤500倍は、対照薬剤のジラム・チウラム・フェナリモル水和剤600倍およびジラム・チウラム・ビテルタニール水和剤600倍より発病果数および1果当たりの平均病斑数が少なく、高い残効性が認められた。イミベンコナゾール・マンゼプ水和剤600倍およびマンゼプ・ミクロブタニール水和剤500倍は、発病果数および1果当たりの平均病斑数が対照薬剤のジラム・チウラム・フェナリモル水和剤600倍およびジラム・チウラム・ビテルタニール水和剤600倍と差がなかった（第52表）。

試験2：ジフェノコナゾール・マンゼプ水和剤500倍は、対照薬剤のジラム・チウラム・フェナリモル水和剤600倍およびジラム・チウラム・ビルフェノックス水和剤750倍よりも発病果数および1果当たりの平均病斑数が少なく、高い残効性が認められた（第53表）。

2．実用化試験

青森県で採用されているDMI混合剤のなかでジフェノコナゾール・マンゼプ水和剤（500倍）がリンゴ黒点病の防除剤として優れていることが明らかとなった。そこでジフェノコナゾール・マンゼプ水和剤を用いて、「落花10日後」および「落花20日後」の散布を「落花15日後頃」に統合し、散布回数を1回削減した防除体系の実証試験を行った。

1）県西果樹研究センター内圃場における試験

材料および方法

いずれの試験も、リンゴ果実の生育は「じか」の落花後10日で示した。

試験1：2000年、21年生「じか」および「つける（台木：M.26）」栽培圃1区10aが供試した。散布月日および薬剤は第51表に示した。すなわち5月25日（落花1日後）
および6月10日（落花15日後）にジフェノコナゾール・マンゼブ水和剤500倍、6月25日（落花30日後）に有機錠剤80（商品名：キロナール水和剤80）1,200倍をスピードドスプレーや用いて散布した。対照区として5月25日（落花1日後）にジラム・チラム・フェナリミル水和剤600倍、6月5日（落花10日後）および6月15日（落花20日後）にマンゼブ水和剤（商品名：ジマンダイセン水和剤）600倍、6月25日（落花30日後）に有機錠剤80 1,200倍を散布し、“つかまる”が9月6日に、”ふじ”が9月29日にそれぞれ各区の果実を無作為に300果選び発病を調査した。なお供試薬剤には農薬名（新クラミン、5,000倍）を添加した。

第2表 リンゴ黒点病に対するDM1混合剤の防除効果

<table>
<thead>
<tr>
<th>追試薬剤</th>
<th>希釈倍数（倍）</th>
<th>調査果数（個）</th>
<th>発病果数（個）</th>
<th>1果当たりの病斑数</th>
</tr>
</thead>
<tbody>
<tr>
<td>ジフェノコナゾール・マンゼブ水和剤</td>
<td>500</td>
<td>9</td>
<td>5</td>
<td>4.0</td>
</tr>
<tr>
<td>イマベンコナゾール・マンゼブ水和剤</td>
<td>600</td>
<td>10</td>
<td>8</td>
<td>23.8</td>
</tr>
<tr>
<td>マンゼブ・ミクロプチニル水和剤</td>
<td>500</td>
<td>8</td>
<td>7</td>
<td>29.8</td>
</tr>
</tbody>
</table>

第3表 リンゴ黒点病に対するDM1混合剤の防除効果

<table>
<thead>
<tr>
<th>追試薬剤</th>
<th>希釈倍数（倍）</th>
<th>調査果数（個）</th>
<th>発病果数（個）</th>
<th>1果当たりの病斑数</th>
</tr>
</thead>
<tbody>
<tr>
<td>ジラム・チラム・フェナリミル水和剤</td>
<td>600</td>
<td>10</td>
<td>9</td>
<td>22.1</td>
</tr>
<tr>
<td>ジラム・チラム・ピリフェノックス水和剤</td>
<td>600</td>
<td>9</td>
<td>9</td>
<td>19.1</td>
</tr>
<tr>
<td>致病剤無散布（水）</td>
<td>-</td>
<td>9</td>
<td>9</td>
<td>165.7</td>
</tr>
</tbody>
</table>

6月6日薬剤散布、6月21日平歴子分離株No.22の分生子懸濁液喷霧接種、8月22日発病調査。

第4表 リンゴ黒点病に対するDM1混合剤の防除効果

<table>
<thead>
<tr>
<th>追試薬剤</th>
<th>希釈倍数（倍）</th>
<th>調査果数（個）</th>
<th>発病果数（個）</th>
<th>1果当たりの病斑数</th>
</tr>
</thead>
<tbody>
<tr>
<td>ジフェノコナゾール・マンゼブ水和剤</td>
<td>500</td>
<td>10</td>
<td>4</td>
<td>3.0</td>
</tr>
<tr>
<td>ジラム・チラム・フェナリミル水和剤</td>
<td>600</td>
<td>10</td>
<td>9</td>
<td>9.9</td>
</tr>
<tr>
<td>ジラム・チラム・ピリフェノックス水和剤</td>
<td>750</td>
<td>10</td>
<td>10</td>
<td>22.1</td>
</tr>
<tr>
<td>致病剤無散布（水）</td>
<td>-</td>
<td>9</td>
<td>9</td>
<td>48.9</td>
</tr>
</tbody>
</table>

6月4日薬剤散布、6月19日平歴子分離株No.22の分生子懸濁液噴霧接種、8月21日発病調査。

第5表 ジフェノコナゾール・マンゼブ水和剤を用いた散布剤効減体系におけるリンゴ黒点病の防除効果

<table>
<thead>
<tr>
<th>月</th>
<th>散布月日および薬剤</th>
<th>フラメニイクリアール</th>
<th>フラメニイクリアール</th>
<th>フラメニイクリアール</th>
<th>フラメニイクリアール</th>
<th>フラメニイクリアール</th>
<th>フラメニイクリアール</th>
<th>フラメニイクリアール</th>
</tr>
</thead>
<tbody>
<tr>
<td>6月</td>
<td>6月5日</td>
<td>6月10日</td>
<td>6月15日</td>
<td>6月25日</td>
<td>6月25日</td>
<td>6月25日</td>
<td>6月25日</td>
<td>6月25日</td>
</tr>
<tr>
<td>5月25日</td>
<td>(1日後)</td>
<td>(10日後)</td>
<td>(15日後)</td>
<td>(20日後)</td>
<td>(30日後)</td>
<td>(40日後)</td>
<td>(50日後)</td>
<td>(60日後)</td>
</tr>
<tr>
<td>試験区</td>
<td>ジフェノコナゾール500倍</td>
<td>ジフェノコナゾール500倍</td>
<td>マンゼブ水和剤500倍</td>
<td>マンゼブ水和剤500倍</td>
<td>ジラム・チラム・フェナリミル水和剤80</td>
<td>有機錠剤80</td>
<td>有機錠剤1200倍</td>
<td>有機錠剤1200倍</td>
</tr>
<tr>
<td>対照区</td>
<td>マンゼブ水和剤600倍</td>
<td>マンゼブ水和剤600倍</td>
<td>マンゼブ水和剤600倍</td>
<td>マンゼブ水和剤600倍</td>
<td>有機錠剤80</td>
<td>有機錠剤80</td>
<td>有機錠剤1200倍</td>
<td>有機錠剤1200倍</td>
</tr>
</tbody>
</table>

6月8日噴霧散布、6月26日平歴子分離株No.22の分生子懸濁液噴霧接種、8月12日発病調査。

6月4日薬剤散布、6月19日平歴子分離株No.22の分生子懸濁液噴霧接種、8月21日発病調査。

第6表 ジフェノコナゾール・マンゼブ水和剤を用いた散布剤効減体系におけるリンゴ黒点病の防除効果

<table>
<thead>
<tr>
<th>品種</th>
<th>調査果数（個）</th>
<th>発病果数（個）</th>
<th>発病率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>ふじ</td>
<td>300</td>
<td>10</td>
<td>1.0</td>
</tr>
<tr>
<td>つがる</td>
<td>300</td>
<td>33</td>
<td>3.3</td>
</tr>
</tbody>
</table>

注：調査月日：つがる 9月6日、ふじ 9月29日。

"ふじ"の落花前または落花後月目。
第55表 ジフェノナゾール・マンゼプ水和剤を用いた散布回数削減体系におけるリンゴ黒点病の防除効果（2001年）

<table>
<thead>
<tr>
<th>区</th>
<th>散布月日および薬剤</th>
<th>防除効果①</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5月21日（1日後）</td>
<td>150 1.7</td>
</tr>
<tr>
<td></td>
<td>5月30日（10日後）</td>
<td>150 2.7</td>
</tr>
<tr>
<td>試験区</td>
<td>6月5日（16日後）</td>
<td>500 3.0</td>
</tr>
<tr>
<td>500倍</td>
<td>6月11日（22日後）</td>
<td>500 3.0</td>
</tr>
<tr>
<td></td>
<td>6月21日（32日後）</td>
<td>1,200</td>
</tr>
<tr>
<td>ジフェノナゾール・マンゼプ水和剤</td>
<td>有機銅（80）水和剤</td>
<td></td>
</tr>
<tr>
<td>500倍</td>
<td></td>
<td>500 3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>対照区</td>
<td>ジフェノナゾール・マンゼプ水和剤</td>
<td>500 3.0</td>
</tr>
<tr>
<td>600倍</td>
<td></td>
<td>1,200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

① 供試品種：つがる。
② 調査月日：9月6日。
③ ‘ふじ’の落花後4日。
④ ‘－’：散布なし。

第56表 ジフェノナゾール・マンゼプ水和剤を用いた散布回数削減体系におけるリンゴ黒点病の防除効果（2002年）

<table>
<thead>
<tr>
<th>区</th>
<th>散布月日および薬剤</th>
<th>防除効果①</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5月7日（落花日）</td>
<td>500 3.0</td>
</tr>
<tr>
<td></td>
<td>5月22日（15日後）</td>
<td>500 3.0</td>
</tr>
<tr>
<td></td>
<td>6月6日（30日後）</td>
<td>500 3.0</td>
</tr>
<tr>
<td>ジフェノナゾール・マンゼプ</td>
<td>ジフェノナゾール・マンゼプ</td>
<td>500 3.0</td>
</tr>
<tr>
<td>水和剤500倍</td>
<td>水和剤500倍</td>
<td>1,200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

① 供試品種：つがる。
② 調査月日：8月26日。
③ ‘ふじ’の落花後4日。

に示した。すなわち5月21日（落花1日後）および6月5日（落花16日後）にジフェノナゾール・マンゼプ水和剤500倍、6月21日（落花32日後）に有機銅剤80 1,200倍をスピードスプレーを用いて散布した。対照区としては5月21日（落花1日後）にジラム・チウラム・フェナリモル水和剤600倍、5月30日（落花10日後）および6月11日（落花32日後）にマンゼプ水和剤600倍、6月21日（落花32日後）に有機銅剤80 1,200倍を散布した。9月6日に各区の果実を無作為に150果選び発病調査し、なお供試薬剤には農薬（商品名：新グラミン、5,000倍）を添加した。

試験3：2002年、23年生つがる（台木：M.26）栽培園1区10aを供試園。散布月日および薬剤は第56表に示した。すなわち5月7日（落花日）および5月22日（落花15日後）にジフェノナゾール・マンゼプ水和剤500倍、6月6日（落花30日後）に有機銅剤80 1,200倍をスピードスプレーを用いて散布した。8月26日に果実を無作為に300果選び発病調査した。なお供試薬剤は農薬（商品名：新グラミン、5,000倍）を添加した。

結 果

試験1：5月25日（落花1日前）から6月25日（落花30日後）までの間期にジフェノナゾール・マンゼプ水和剤500倍を散布した約15日間隔・3回散布体系における黒点病に対する防除効果は第54表に示した。ジフェノナゾール・マンゼプ水和剤500倍による約15日間隔で3回散布した試験区は、約10日間隔で4回散布した対照区と同等の防除効果を示した。

試験2：5月21日（落花1日後）から6月21日（落花32日後）までの間期にジフェノナゾール・マンゼプ水和剤500倍を散布した約15日間隔・3回散布体系における黒点病に対する防除効果は第53表に示した。ジフェノナゾール・マンゼプ水和剤500倍による約15日間隔で
第37表 農家圃場におけるジフェノコノゾール・マンゼプ水和剤を用いたリンゴ黒点病防除試験

<table>
<thead>
<tr>
<th>場所</th>
<th>品種</th>
<th>調査数（個）</th>
<th>発病率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>三戸町梅内</td>
<td>つがる</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>紅玉</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>倉石村小流</td>
<td>紅玉</td>
<td>300</td>
<td>1.7</td>
</tr>
</tbody>
</table>

いずれの圃場も、2002年5月6日（「ふじ」の落花直後）および5月22日（「ふじ」の落花15日後前）にジフェノコノゾール・マンゼプ水和剤500倍散布。9月2日に発病調査。

3回散布した試験区は、約10日間で4回散布した対照区と同等の防除効果を示した。

実験：3月7日（落花11日）から6月6日（落花30日後）までの期間、ジフェノコノゾール・マンゼプ水和剤500倍を用いた15日間隔・3回散布体系における黒点病に対する防除効果は55.56%に示した。ジフェノコノゾール・マンゼプ水和剤500倍により15日間隔で3回散布した試験区は黒点病の発生がほとんどなかった。試験は本省の多発圃場で行っているので、高い防除効果を示したと判断した。

2. 農家圃場における試験

2000年～2002年の3か年、県南果樹研究センター内の農家圃場において、リンゴ黒点病の防除試験。すなわちリンゴの落花期頃から落花30日後頃における薬剤散布回数をジフェノコノゾール・マンゼプ水和剤を用いて15日間隔で3回に削減した黒点病防除体系を大規模試験により実証した。この防除体系を農家圃場における現地の防除法として普及させるため、展示を目的として農家圃場で試験を行った。

材料および方法

2002年、三戸郡三戸町梅内約15年生「つがる」および「紅玉」（台本：マルバラウッド）栽培園で、三戸郡倉石村小流（現：三戸郡倉石村小流）の約10年生「紅玉」（台本：マルバラウッド）栽培園でそれぞれ1区10aを供試した。いずれも5月6日（落花直後）および5月22日（「落花15日後頃」）にジフェノコノゾール・マンゼプ水和剤500倍をスピードスプレーヤ用いて散布し、「落花30日後頃」以降は農家慣行により防除した。9月2日には各品種について無作為に300個選び発病調査した。

結果

5月6日（「落花直後」）および5月22日（「落花15日後頃」）にジフェノコノゾール・マンゼプ水和剤500倍をスピードスプレーヤ用いて散布した結果は第37表に示した。三戸郡三戸町梅内および倉石村小流において、ジフェノコノゾール・マンゼプ水和剤500倍を「落花直後」および「落花15日後頃」にスピードスプレーヤを用いて散布した結果、黒点病の発生がほとんどなく、高い防除効果を示した。

3. 考察

1996年、青森県南部地方において、6月中旬（「落花15日後頃」）のDMI混合剤の散布と次の散布との間隔が13日以上あたった圃場でリンゴ黒点病が多発した（新谷ら、1997）。このことから、1996年採用のDMI剤混合剤、すなわちジラム・チラム・フェナリル水和剤、ジラム・チラム・ピテルタール水和剤およびジラム・チラム・ピレフェノックス水和剤は「落花直後」および「落花15日後頃」の防除剤として、黒点病多発地帯では期待できないと考えられた。そこで、これらの薬剤よりも黒点病に対する残効性が高いDMI剤混合剤の検索を行った結果、散布後15日間は安定した残効性がある薬剤としてジフェノコノゾール・マンゼプ水和剤(500倍)が検出された。

2000年から2002年にわたる3か年、ジフェノコノゾール・マンゼプ水和剤500倍について、県南果樹研究センター内の小流で「落花直後」および「落花15日後頃」にスピードスプレーヤを用いた実証的防除試験を行い、また2002年、農家圃場において展示を目的として同様にスピードスプレーヤ散布で防除効果を検討した。その結果、いずれの試験においても黒点病に対して高い防除効果が得られ、黒点病多発地における防除体系として実用性が高いと判断された。

以上から、2003年に青森県において黒点病多発地の防除剤として、「落花直後」と「落花15日後頃」にジフェノコノゾール・マンゼプ水和剤500倍を採用した。これにより、黒点病多発地においても「落花10日後頃」と「落花20日後頃」の散布を「落花15日後頃」に統合し、県内共通の散布回数の防除体系（落花直後から落花30日後頃まで、15日間隔3回散布）を実現することができた。
1997年から2004年までの8年間にわたり、リンゴ黑点病（病原菌：Mycosphaerella pomi（Pass.）Lindau）の発生生態および防除法に関する一連の研究を行った。成果は次のとおり要約される。

Ⅰ 病徵および病原菌

1. 病微

「つがる」果実では、6月下旬または7月下旬に果点（気孔）が黒変した針頭大の果点病を生じ、この病窩は7月中旬には光沢のある径1mm程度の黒色の小薔薇であった。陽光面の着色部では赤色を呈していた、その後病斑部は果実の肥大に伴い開きを生じた。成熟果（9月中旬）の病斑は暗赤色であるが、着色の劣る部分では淡緑色であった。病斑の大きさは1〜3mmで8mm程度もみられた。各色赤色種と「紅玉」、「スターキングデリシャス」、「北星」、「ふじ」および「同光」の成熟果の病斑は赤褐色〜黒色。しかし「ショナゴールド」では緑褐色〜暗緑色であり、黄色種の「降雪」および「玉林」の病斑は暗緑色であった。病斑の大きさは品種によりやや異なるが、斜面〜4mmで8mm程度もみられた。

「つがる」および「ふじ」葉では、8月下旬〜9月下旬から1〜3mm、不正形、紫褐色の病斑を生じ、しばしば癒合して大いの病斑となった。時に褐色〜灰褐色の花死部を伴っていた。病斑は葉身のいずれの部分にも生じるが、葉縁に多い傾向であった。罹病葉はやがて黄化し落葉した。変質葉では、病斑は褐色〜紫褐色で葉脈に囲まれた角形であった。罹患葉、病変は発生することがなく、葉脈に囲まれた角形、暗褐色であった。

2. 病斑の顕微鏡観察

果実の病斑はいずれも果点（気孔）を中心とし生じていた。果点からは菌糞が伸長し、菌糞上にCylindrosporum型分生子を生じていた。葉の紫褐色病斑部では気孔から菌糞が伸長し、この菌糞上にCylindrosporum型分生子を生じ、また壊死部では気孔直下の呼吸腔部に子座を形成し、気孔部にCylindrosporum型分生子を生じていた。

3. 病斑の病理解剖観察

果実においては、発病初期の病斑部は表皮および下皮細胞5〜6層、また無核期では表皮から果肉細胞10〜20層程度が壊死し癒着していた。壊死部では大きさ1〜2μmの菌糞が認められた。癒着した細胞はスタインに染色されなかったが、プロックグラシン・塩基反応により細胞壁が顕著に赤色に染色されたので、リグニン化していると判断した。越冬罹病落果果実においては、表皮および下皮部に偽核組織が発達し、これら部分に偽子の発生を生じていた。また子座を生じCylindrosporum型分生子を形成していた。

葉の発病初期病斑（不正形、紫褐色病斑）では、偽核組織が発達し、また芽状組織細胞の表皮が壊死していた。偽系は芽状組織および芽頭状組織の細胞間隔でみられ、芽状組織細胞では1.0〜1.5μm、芽状組織細胞ではやや太く1.5〜20μmであった。落葉5日後、無核落果果実では芽状組織細胞で2〜4μm、芽状組織細胞4〜6μmであり、細胞内に癒する病斑もみられた。主として芽状組織細胞の表皮下に偽核器（sporangiojug）が埋没して形成されていた。

Ⅳ 病原菌

偽子の発端期は、基礎から採取した越冬罹病落果果実および罹病落果の病斑に生じた偽子の発端期、子の発育初期に生じた偽核組織の形態的特徴はWaltin and Orton（1926）によるMycosphaerella poniの記載と一致した。

偽核器世代（sporangiojugale state）：染色鏡にも偽菌類の病斑上にみられる柄部模様構造および柄球子様体はそれぞれ偽核器、偽核（sporangiojug）であると判断された。

Cylindrosporum型分生子世代：生育期の罹病果実及び罹病果病斑および越冬した罹病落果果実の病斑上に生じCylindrosporum型分生子の形態的特徴はBrooks and Black（1912）およびBland（1915）によるC. poniの記載と一致した。

分離菌の形態および培養性質：果実および葉の病斑から周の組織分離菌、越冬落果および越冬落果果実の病斑上に生じた子の胞子発生分離菌、生育期の果実および葉の病斑上に生じたCylindrosporum型分生子単胞子分離菌および越冬落果果実の病斑上に生じたCylindrosporum型分生子胞子分離菌の形態的特徴は、いずれもC. poniの記載と一致した。これらの分離菌はPDA平板で、癒着度、発育度、無核を生じ、やがて中央部にしだれる灰色から黒色のフェルト状に変化した。分生子形成様式はフィアロ型すなわち小核と子々に伴い発達する様式であった。

分離菌の病原性：越冬落果の病斑上に生じた子の胞子発生分離菌、越冬落果果実の病斑上に生じた子の胞子発生分離菌、生育期の果実病斑上に生じたCylindrosporum型分生子胞子分離菌、生育期の果実病斑上に生じたCylindrosporum型分生子胞子分離菌および越冬落果果実の病斑上に生じたCylindrosporum型分生
生子単胞子は本菌に接種したリンゴ果実はいずれも黒点病を生じ、いずれの接種部位からも単胞子と同様のCylindrosporum属菌が高率に再分離された。

5. 病原菌の発育場所
リンゴ黒点病菌は連続暗黒下および連続照光下のいずれで、PDA、YPsS培地、Czapek培地、Richards寒天およびHopkins寒天では優性性成長を生じ、菌叢エキス寒天およびリンゴ有葉汁寒天ではエリテファ状の菌叢を生じ、いずれの培地でも生育は遅いが、試験培地では菌叢エキス寒天でもっとも良好、PDAがこれに次いで、Czapek寒天、Richards寒天およびHopkins寒天では光により生育が若干抑制されたが、YPsS寒天、菌叢エキス寒天およびリンゴ有葉汁寒天では連続照光下および連続暗黒下では同じであった。
本菌は20℃で生育し、生育適温20～25℃であった。またpHを変えるPDA平皿ではpH±1.49で生育し、生育はpH6.9でもっとも良好であったが、pH8.2～8.4の酸性域から塩基性域までの広いpH域で比較的良好であった。

Richards寒天を基準培地とし、窒素源の種類と本菌の生育の関係を調査した結果、有機窒素化合物ではL-asparagine、L-lamineおよびL-glutamineで良好、ついでL-valine、L-tyrosineで良好であった。尿素およびL-leucineで劣り、L-cystineで著しく劣った。無機窒素化合物（KNO₃、NaNO₃、NH₄NO₃、（NH₄）₂SO₄、（NH₄）₃PO₄、NH₄Cl）では有機窒素化合物に比べて総じて劣り、尿素およびL-leucineと同程度であった。また窒素源の種類との関係では、糖類のlactose、maltose、sucroseおよび多糖類のsoluble starchで総じて生育が良好であり、ついで単糖類のfructose、galactose、glucose、mannoseで良好で、多価アルコールのmannitolでももっとも劣った。

II 病気の発生生態
1. 園場における仮性の卵殼の成熟過程
2003年、園場から採取した「つがる」罹病落葉上の偽子の卵殼は4月2日には卵のうを生じていたが、卵のう内に卵のう殻は確認できなかった。4月9日から20日には卵のう内に未熟な卵のう殻がみられたが、5月2日では卵のう殻は成熟していた。なお、未熟卵のう殻は5～25℃で成熟可能、25℃でもっとも早く成熟したが、30℃の高温では成熟しなかった。

2. 子のう胞子の飛散
1998～2001年の調査では、子のう胞子の飛散は4月下旬または5月上旬から始まり、最盛期は5月中旬～6月上旬で、その後は漸減しながら7月中旬下旬まで続いた。また2001年5月および2003年5月における、1時間ごとの飛散数調査では、子のう胞子は降雨前に湿度が高まったころからわずかに飛散しはじめ、降雨が始まって2～7時間後の飛散量がもっとも多く、その後降雨の有無にかかわらず漸減した。相対湿度100％の条件下では飛散量は概して少ないが、連続照光下で相対湿度100％で推移した場合は多量の子のう胞子が飛散した。子のう胞子は短時間間のいずれでも飛散したので、光による飛散への影響はないと考えられる。

3. 子のう胞子の発芽
素寒天平板上の子のう胞子は10～30℃で良好に発芽した。発芽率の生育は25℃でもっとも良好であり、30℃やや増殖される傾向であった。

4. 子のう胞子の発芽
子のう胞子発芽実験で接種後40日後から自然発病と同様の黒点病の発現、すなわち果点が黒変し、やがて果点を中心としたやや濃んだ暗緑色斑点を生じた。子のう胞子接種実験で接種後3か月後から自然発病と同様の不正型、紫褐色斑点を生じ、やがて黒変落葉した。また、子のう胞子を接種し黒変落葉した罹病果実を低温（5℃）下の温室に保持した結果、子のう胞子、子のうおよび子のう胞子を生じ、それらの形態的特徴はM. pomiの記載とよく一致した。

5. Cylindrosporum型分生子の伝染源としての働き
無防除のリンゴ園場から採取した果実および葉の表面において、病原菌の子のう胞子から生じた菌糸上に形成されるCylindrosporum型分生子を発見した。そこでこの
6. 病原菌の宿主への侵入

果実に接種された *Cylindrosporum* 型分生子は21時間後にはほとんどものが発芽し、菌糸は果実面を生じ、接種120時間後に気孔（果點）から果実組織に侵入した。果実に接種した子の胞子は24時間後にはほとんどのものが発芽し、発芽した子の胞子の多くは分生子を形成した。48時間および72時間には子の胞子から生じた菌糸は *Cylindrosporum* 型分生子を生じながら発育し、96時間後には気孔から菌糸組織に侵入した。果実および果実のいずれにおいても、気孔以外からの病原菌の侵入は認められなかった。

7. 致病における果実の感染時期、および果実と葉の感受性

2000～2003年の4か年の調査では、馬蹄幹の「つがる」果実の発病は6月下旬または7月上旬からみられ、その後発病果率は急激に高まり、8月上旬にはほぼ100%に達した。

果実の感染時期を1997年、1999年および2000年の3か年、「つがる」果実を供試し被袋実験により検討した。その結果、黒点病の感受性は落花期ないし（5月中旬）から始まり、落花10日後頃～30日後頃（5月下旬～6月中旬）が多く、その後7月中旬まで続いた。

果実の生育に伴う感受性の推移を1999～2001年の3か年、「つがる」果実を供試し病原菌接種実験により検討した。落花10日後頃～30日後頃（5月下旬～6月中旬）の感受性が高くその後順次低下するが、落花60日後頃（7月中旬）においても程度は低いが感受性が保たれていた。

植え、「ふじ」果実に *Cylindrosporum* 型分生子を接種して、果物の老若と発病との関係を検討した。接種2か月後から自然発病と同様の小正形、紫褐色病斑を生じ、発病果物は順次変化して発病した。新種の葉から10葉までの葉について、発病による発病差は認められなかった。

Cylindrosporum 型分生子を接種した植え、「ふじ」果実の発病に比べ、「つがる」果実の発病が明らかに遅かった。発病果実の発病は、2000～2003年の4か年の調査では、馬蹄幹の「つがる」果実の発病は6月下旬または7月上旬からみられ、その後発病果率は急激に高まり、8月上旬にはほぼ100%に達した。

8. リンゴ品種の黒点病感受性

果実における自然発病調査および人工接種による発病調査の結果から、黒点病に対するリンゴ品種の感受性を検討した。感受性の基準として「紅玉」に比べ、「降井」、「つがる」、「ジョナゴールド」および「あおり13」は同等～やや高く、「サラ」、「ふじ」および「北里」は低く。「国光」および「スターキャンディショップ」は著しく低いと考えられる。「千秋」、「あおり9」および「金星」は概ね「ふじ」程度であると考えられる。

9. 共通宿主

セイヨウナシ、ニホンナシ、マルメロおよびカリンの自然発病状態は次のとおりである。

セイヨウナシ、「ゼネラル・レクラーク」および「ラ・フルランス」果実では、7月上旬から果汁を中心にとした黒色の小斑点病斑が生じ、この病斑は収穫期に（ゼネラル・レクラーク：9月下旬、ラ・フルランス：10月中旬）には大きさ0.5～3mm、やや円、周囲が紫灰色を呈した。「ラ・フルランス」ではかさぶた状のものが多くかった。病斑の果肉は褐変していたが、この部分から腐敗することもなかった。葉では、8月中旬から大きさ0.5～3mmの不正形、紫褐色～黒褐色の病斑を生じ、しばしば癒合して大型の病斑となり、時に灰褐色の変死を伴っていた。病斑は葉縁に多い傾向であった。発病果はやや変化し落ちた。

ニホンナシ「幸水」果実では、7月下旬から果点を中心とした頭大、黒色の小斑点病斑が生じ、収穫期の9月下旬には頭大、紫褐色病斑となった。病斑部の果肉はわずかに褐変していたが、この部分から腐敗することもなかった。葉の発病はみられなかった。

マルメロ「在来種」果実では、7月下旬から果点を中心とした頭大、黒色の小斑点病斑が生じ、やがてこれらは癒合し、収穫期の10月下旬には大きさ1～5mmのやや円、不正形、暗緑色病斑となった。病斑部の果肉は褐変しているが、この部分から腐敗することはなかった。葉では、8月中旬から大きさ1～6mmの不正形、紫褐色～黒褐色病斑を生じ、しばしば癒合して大型の病斑となった。11月中旬には葉脈に回まれた1～3mmの角形、紫褐色病斑もみられた。発病果はやや変化し落ちた。

カリン果実は、7月下旬から果点を中心とした頭大、黒色の小斑点病斑が生じ、収穫期の11月中旬には大きさ0.5～2mmの暗緑色病斑となった。病斑部の果肉はわずかに褐変していたが、この部分から腐敗することはなかった。葉の発病はみられなかった。

上記共通宿主の発病調査にと生じた傷のうえ、子のうおよび子の胞子の形態的特徴はいずれも *M. pomi* の記載と一致した。また各植物由来の子の胞子単胞子分離菌および果実病斑組織分離菌はいずれもPDA培養でリ

98——
リンゴ黒点病菌によく似た菌糸を形成し、Cylindrosporium 型分生子を生じた。これらの分生子の大きさおよび隔壁数は C. pomi の記載と一致した。よって各宿主上の菌はいずれも Mycosphaerella pomi (Pass.) Lindau (アナモルフ：Cylindrosporium pomi C. Brooks) と同定された。

接種試験ではいずれの植物からの分離菌も、それぞれの原宿上の果実に病変を再現し、同時にリンゴ果実に黒点病を生じさせた。一方、リンゴ黒点病菌もセイヨウナシ、ニホンナシ、マルメロおよびカリンのいずれの果実にも黒色小斑点を生じさせた。

共通宿主の一つ、セイヨウナシ越冬罹病落葉からのもう胞子の飛散は、2000年の調査では4月6月下旬から始まり、最盛期は5月3～4日で、7月4～5日まで続いた。これはリンゴ越冬罹病落葉からのもの胞子の飛散とほぼ同様で、飛散胞子数もリンゴ越冬罹病落葉からのものに匹敵した。したがってこのものを胞子はリンゴ黒点病をはじめ共通宿主の黒点症の発病に大きく関わることが明らかとなった。

M. pomi による病害は、わが国ではリンゴ以外で記録されていない。セイヨウナシ、ニホンナシ、マルメロおよびカリンのいずれも、病名はリンゴ病名に準じて「黒点病（セイヨウナシおよびニホンナシ：Mycosphaerella fruit spot, マルメロ：blotch, カリン：fruit spot）」とした。

10. 病原菌的生活環

リンゴおよびその果樹の黒点病に関する一連の研究の結果から、病原菌の生活環は次のように要約される。

a. 小胞子の発生と子胞子の飛散

前年の罹病枝に小胞子が発生し、この胞子は4月下旬または5月上旬に成熟した。次に春の発病期に子胞子を飛散させる。子胞子は飞行数最盛期は5月中旬頃から6月下旬までで、その後は急減しながら7月末まで続く。

なお、越冬罹病被害果実の発病期に5月にCylindrosporium 型分生子を生じ、この分生子は第一伝染源として働くことが予想されるが、未発見である。

b. 子胞子からのCylindrosporium 型分生子の形成

第一次伝染源のもの胞子は土として降雨時に飛散し、果実や葉の表面に到達。発病後、子胞子は直接または子胞子から発生した菌糸をCylindrosporium 型分生子を生じる。菌糸は果実や葉の気孔から侵入し、また生じた分生子は二次伝染源となる。

c. 果実および葉の変染

子胞子による感染は果実では5月～6月頃の花粉開花期の後に、葉では4月～6月頃の葉面開花期の後に感染する。黒点病の発病が起こり、果実および葉の病斑は黒色の斑点を形成し、その病斑はリンゴ黒点病菌により形成される。

d. 病原菌の越冬

越冬罹病果実および病葉の病斑上に出芽口を発し、越冬した病原菌が翌春に発芽する。罹病した越冬病原菌は越冬後の4月下旬または5月上旬に発芽し、そのの胞子を飛散させる。この子胞子は次に共通宿主間で互いに黒点病の伝染源になる。

III 防除法

リンゴ黒点病の発病に好適な気象・環境条件においてても、散布後15日間安定した残効性を有するステロール脱メチル化阻害剤（DMI 剤）混合剤として、ジェフェノナゾール・マンゴベ水和剤（500 倍）を検討した。本剤の有効性は、2000年から2002年にわたる3 年間、県内果樹研究所センター内圃場で、さらに2002年、農業試験場においてアペックススプレーや田植えの大規模な防除試験で実証された。これらの結果に基づいて、2003年から青森県において黒点病の多発地の防除として、「蘂の」と「薬の」の発病直後に「薬の」の薬剤を散布する「薬の」の薬剤20号後剤）の散布を「薬の」の薬剤15号後剤）に統合した。県内共通の散布回数の防除体系（「薬の」の薬剤の薬剤30号後剤）及び15日間隔3回散布）の実現に寄与した。
引用文献

Ganapathi, A. and Corbin, J. 1979. Colletoglocon nubilosum sp. nov., the imperfect state of Mycosphaerella nubilosa on
Eucalyptus in New Zealand. Transaction British Mycological Society 72: 237-244.

Studies on the Ecology and Control of Brooks Fruit Spot of Apple Caused by *Mycosphaerella pomi* (Pass.) Lindau

Shigemitsu Arai

Kennan Fruit Tree Research Center, Apple Experiment Station, Aomori Prefectural Agriculture and Forestry Research Center

Keywords: Brooks fruit spot disease, *Mycosphaerella pomi*, *Cylindrosporium pomi*, symptom, cultural characteristic, infection source, infection, fruit susceptibility, common host, life cycle, disease control, difenoconazole-mancozeb

Summary

Brooks fruit spot disease, caused by *Mycosphaerella pomi* (Pass.) Lindau, is an important disease of apples in eastern side (Nanbu district) of Aomori Prefecture, northern Japan. The study was conducted from 1997 through 2004 at Kennan Fruit Tree Research Center, Apple Experiment Station in Gonohe-machi, Aomori Prefecture, with special reference to the epidemiology and its chemical control of the disease.

1. Symptoms and causal fungus

On fruit of red-skinned cultivar ‘Tsugaru’, first symptoms appeared as black, pinpoint spots on lenticels in late June or early July. The spots were about 1 mm in diameter, brilliant black in early or mid July, and brilliant red on colored surface of the fruit (Plate 1A, B). The spots became slightly sunken as the season advanced. On mature fruit (mid or late September), they were usually 1-3 mm in diameter, but sometimes reached about 8 mm in diameter, and were dark red on colored surface but dark green on lighter portion (Plate 1C, D). On red-skinned cultivars like ‘Jonathan’, ‘Starking Delicious’, ‘Hokuto’, ‘Fuji’, and ‘Rolls Janet’, spots on mature fruit were reddish brown to black, while spots on ‘Jonagold’ fruit were green to dark green ‘Jonathan’. Plate 2A, B; Jonagold, Plate 2C, D; Starking Delicious, Plate 2E, F; Hokuto, Plate 2G, H; Fuji, Plate 3A, B; Rolls Janet, Plate 3C, D). On yellow-skinned cultivars like ‘Mutsu’ and ‘Orin’, spots on mature fruit were dark green, with the sizes of pin-point to 4 mm or sometimes reaching about 8 mm in diameter (Mutsu, Plate 3E, F; Orin, Plate 3G, H).

On leaves of cvs. ‘Tsugaru’ and ‘Fuji’, symptoms appeared as purple flecks, which were usually 1-3 mm in diameter but often coalesced to form large, irregular lesions, accompanied by necrotic areas (Tsugaru, Plate 4A, B; Fuji, Plate 4D, E). Diseased leaves gradually turned yellow and fell. Spots on fallen leaves turned dark brown and became angular in shape, 1-3 mm in diameter, delimited by small veins (Tsugaru, Plate 4C: Fuji, Plate 4 F).

2. Light microscope observations on fruit and leaf symptoms

Spots of fruits occurred on lenticels. Hyphae protruded through the lenticels and *Cylindrosporium* type conidia were produced on the hyphae (Plate 5A, B). On the purple flecks of leaves, hyphae protruded through stomata, and *Cylindrosporium* type conidia were produced on the hyphae (Plate 5C, D). On necrotic areas of the leaf, stromata of...
the fungus were formed at the respiratory cavity beneath the stoma, and *Cylindrosporum*-type conidia were produced through the stroma (Plate 5E-G).

3. Histopathological observations
On fruit lesions in early stage, necrosis was confined to the epidermal cells and hypodermal cells of 5-6 layers, but gradually extended inwards up to hypodermal cells of 10-20 layers at harvest time (Plate 6A). The hyphae in the necrotic tissue were 1-2 μm in diameter. With necrotic tissues, lignification of cell walls was shown by phlorogulcicin (1% in 18% HCl). On overwintered, fallen diseased fruits, pseudoparenchyma appeared in the epidermis and hypodermis, which developed into stromata and pseudothecia containing ascii with ascospores (Plate 7A-F). In addition, *Cylindrosporum*-type conidia were then formed from the stromata (Plate 6B, C).

Under microscope, necrosis of epidermal cells on lower surface of the leaf and browning of the palisade tissues were apparent on leaf lesions. The mycelium grew intercellularly into the palisade and spongy tissues. The hyphae were 1.0-1.5 μm in diameter in palisade tissue, while 1.5-2.0 μm in diameter in spongy tissue (Plate 6D, E). In 5 days after leaf fall, the hyphae were 2-4 μm in diameter in the palisade tissue, and 1.5-2.0 μm in diameter in the spongy tissue. Some hyphae were seen growing in the cells of both tissues. Spermogonia were produced mainly in tissues on the adaxial surface, though they were seen in tissues on both leaf surfaces (Plate 6F).

4. Morphology of the causal fungus
The morphological characteristics of pseudoperithecia, asci, and ascospore formed on the overwintered, fallen diseased fruits (Plate 7A-F) and leaves (Plate 8A-F) were similar to the description of *Mycosphaerella poni* by Walton and Orton (1926). Pycnidium-like organs and pycnospore-like bodies formed on the fallen diseased leaves were regarded as spermogonia and spermatia, respectively, based on morphological and cultural experiments (Plate 9A-C). It is concluded that *Phoma*-type conidial state described by Brooks and Black (1912) is spermogonial state (Plate 9D, E). *Cylindrosporum*-type conidia produced on lesions of fruit (Plate 5A, B) or leaf (Plate 5C-G) in growing season, and on lesions of overwintered fallen diseased fruit (Plate 6B, C) were similar to the descriptions of *Cylindrosporum poni* by Brooks and Black (1912) and Miura (1915). Morphological characteristics of the fungus isolates (Plate 9F) from diseased apple fruit and leaf, single ascospore produced on overwintered, fallen diseased fruit and leaf, single *Cylindrosporum*-type conidium produced on lesions of fruit or leaf in growing season, or on lesion of overwintered, fallen diseased fruit, all well agreed to the descriptions of *C. poni* by Brooks and Black (1912) and Miura (1915). Conidiogenesis in these isolates on PDA plate was phialidic (Plate 9G).

5. Pathogenicity of the causal fungus
Inoculations of unwounded apple fruit with *Cylindrosporum*-type conidia of the fungus isolates from single ascospore, single *Cylindrosporum*-type conidium on diseased fruit or leaf in growing season, as well as on overwintered, fallen diseased fruit, all produced typical symptoms of Brooks fruit spot disease on apple. And the same fungus was reisolated from these artificially produced fruit spot tissues.

6. Cultural characteristics of the causal fungus
The fungus developed slimy colonies with numerous conidia on PDA, YpsS agar (Emerson's agar), Czapek's agar, Richards' agar, and Hopkins' agar, while felty colonies on malt extract agar and apple leaves extract agar, both in total darkness and continuous light (daylight fluorescent light at a light intensity of about 1000 lux) (Plate 10A). Colony growth of the fungus was most vigorous on malt extract agar and PDA. Colony growth on PDA, Czapek's agar, Richards' agar, and Hopkins' agar were somewhat retarded in light rather than in darkness. No inhibitory effect of light, however, was observed with colony growth on YpsS agar, malt extract agar, and apple leaves extract agar. On PDA plates the fungus developed colonies at a temperature range of 0-30°C, with an optimum at 20-25°C. The optimum hydrogen ion concentration for colony growth on PDA plates is pH 6.9, but fairly good growth occurred also at between pH 4.9 and 8.2. On Richards' agar, L-asparagine, L-alanine, and L-glutamine were excellent nitrogen sources for colony growth, and L-valine and L-tyrosine were also good, but urea, L-leucine, L-cystine, and inorganic
nitrogen sources (KNO₃, NaNO₃, NH₄NO₃, (NH₄)₂SO₄, (NH₄)₃HPO₄, and NH₄Cl) were not. On Richards' agar, lactose, maltose, sucrose, and soluble starch were good carbon sources for colony growth, and fructose, galactose, glucose, and mannose were also good, but mannitol was not.

II. Epidemiology

1. Development of pseudothecia
In the field observations in 2003, ascus formation in pseudothecia on the overwintered, fallen diseased leaves began in early April, when the asci were still immature with no ascospores: matured ascospores were formed by early May. Under controlled temperature in the laboratory, pseudothecia produced ascospore at a temperature range of 5 to 25°C.

2. Ascospore dispersal
In the field observations during the years 1998-2001, ascospores of the fungus were first trapped in late April or early May, showing peak discharge in mid May to early June and a few spores trapped in mid to late July. Ascospores discharge was greatly influenced by air humidity and rainfall: only a few ascospores were trapped before the initiation of rain, while a great numbers of ascospores were trapped in 2-7 hours after initiation of the rain. No differences were seen in ascospore discharge pattern during day and night.

3. Ascospore germination
On water agar, good ascospore germination occurred at a temperature range of 10-30°C. The germ tube grew most fast at 25°C, while germ tube growth were retarded at 10 and 30°C. On slide grass, best ascospore germination occurred under 100% RH, while no germination at 92% RH. On water agar, germination of ascospore was better in darkness than in daylight fluorescent light (about 300 lux). In distilled water, ascospores germinated at a range of pH 2-12, with an optimum at pH 8. On water agar, germinating ascospores then produced Cylindrosporum-type conidia on developing hyphae or directly on ascospores themselves at a temperature range of 10-30°C, with an optimum at 20-25°C. On water agar, the conidial formation was favored in daylight fluorescent light (about 300 lux) than in darkness.

4. Pathogenicity of ascospore
Unwoundedly apple fruits inoculated with ascospores showed numerous, small, dark green spots typical of Brooks fruit spot disease in 40 days after inoculation (Plate 10B); on the while, unwounded leaves inoculated with ascospores showed small purple flecks in 3 months after inoculation (Plate 10C).

5. Role of Cylindrosporum type conidia as an infection source
On apple fruits and leaves on the tree in the growing season, Cylindrosporum type conidia were commonly produced on hyphae arising from the ascospores (Plate 11A-C). Such Cylindrosporum-type conidia were artificially produced on leaves of potted apple trees by ascospore inoculation, and resultant conidia (Plate 11D, E) were collected and used as inocula for healthy apple fruits. The apple fruits inoculated in this matter produced typical symptoms of Brooks fruit spot disease (Plate 11F). Consequently, it is concluded that Cylindrosporum-type conidia naturally occurring on infected fruits and leaves could serve as secondary infection source for Brooks fruit spot disease development in the orchards.

6. Invasion of the causal fungus into apple fruits and leaves
On inoculated fruits, most of the Cylindrosporum-type conidia germinated by 24 h after inoculation to produce hyphae, which penetrated into the fruits through lenticels in 120 h (Plate 11G). Most of the ascospores sprayed for inoculation onto apple leaves germinated by 24 h to produce hyphae, which in turn produced Cylindrosporum-type conidia. By 96 h after inoculation, some of the hyphae penetrated into the leaves through the stomata (Plate 11H).

7. Critical time for fruit infection in the field
Field observations made during the years of 2000-2003 showed that the Brooks fruit spot disease on 'Tsugaru' fruits first appeared in late June or early July in case that no chemical sprays were used in the orchard.

In 1997, 1999 and 2000, field experiments were conducted to see the critical time for brooks fruit spot disease infection using 'Tsugaru' fruits that were periodically bagged and unbagged. The results showed that the fruits were liable to the disease from soon after petal fall (mid or late May) to mid July, with the most critical times in 10-30 days after petal fall (late May to mid or late June).

In 1999-2001, field experiments were conducted to see the susceptibility of the fruits at different growth stages, where 'Tsugaru' fruits were periodically sprayed with conidial suspension. The results showed that the fruits were most susceptible in 10-30 days after petal fall (late May to mid or late June), then becoming gradually less susceptible for 60 days after petal fall (until mid July).

Healthy, unwounded leaves on potted 'Fuji' trees were inoculated with *Cylindrosporium* type conidia in the glasshouse. In 2 months after inoculation, the leaves showed characteristic purple flecks typical of leaf infection with *M. pomi*. The diseased leaves then gradually turned yellow and fell. Any difference in susceptibility was not detected with leaf age.

8. Fruit susceptibility to Brooks fruit spot disease in various apple cultivars

Susceptibility of fruit of different apple cultivars was determined on the basis of degrees of natural infection and artificial inoculation with *Cylindrosporium* type conidia. Cultivars 'Jonathan', 'Tsugaru', 'Jonagold', and 'Aori 13' were highly susceptible, followed by 'Orin', 'Fuji', 'Hokuto', 'Sensyu', 'Kinsei', and 'Aori 9'. 'Rolls Janet' and 'Starking Delicious' were only slightly susceptible.

9. Symptoms on common hosts and cross inoculations

European pear (Pyrus communis L. var. sativa de Candolle), Japanese pear (Pyrus serotina Rehder var. culta Rehder), quince (Cydonia oblonga Miller) and Chinese quince (Chaenomeles sinensis Koehne) have so far been regarded as common hosts for *Mycosphaerella pomi*, cause of Brooks fruit spot of apple, with the following symptoms.

European pear (Plate 12A-D): On fruits of cvs. 'La France' and 'General Leclerc', black, pin-point spots appear at lenticels in early or mid July. The spots became slightly sunken, dark green, 0.5-3 mm in diameter at harvest time (La France, mid October; General Leclerc, late September). The spots of 'La France' were sometimes crustose. The flesh beneath the spots was browned, but no further rotting. On leaves, first brown fleck 0.5-3 mm in diameter appeared, which then frequently coalesced to form irregular shapes. The diseased leaves gradually turned yellow and fell.

Japanese pear (Plate 14A): On fruits of cv. 'Kosui', black, pin-point spots appear at lenticels in late July. The spots became dark green at harvest time (late September). The flesh beneath the spots was browned, but no further rotting. No leaf lesion was seen in the orchard.

Quince (Plate 13A-C): On fruits of cv. 'Zairai-syu', black, pin-point spots appear in late July. Then, the spots coalesced to form irregular shapes, slightly sunken, dark green, and 1-5 mm in diameter at harvest time (late October). The flesh beneath the spots was browned, but no further rotting. On leaves, irregular, brownish flecks, 1-6 mm in diameter appeared and frequently coalesced with each other. The spots were angular in shape and 1-3 mm in diameter at mid November. The diseased leaves gradually turned yellow and fell.

Chinese quince (Plate 14D): On fruits, black, pin-point spots appeared in late July. The spots were dark green and 0.5-2 mm in diameter at harvest time (mid November). The flesh beneath the spots was browned, but no rotting. No leaf lesion was seen in the orchard.

Morphological characteristics of pseudothecia, asci and ascospores found on diseased leaves of above hosts were all quite similar to those for apple Brooks fruit spot fungus, *M. pomi* (European pear, Plate15A-C; Japanese pear, Plate 15E; F: quince, Plate 15H-J: Chinese quince, Plate 15L, M). In isolation tests, all isolates from diseased fruits and single ascospores from fallen, diseased leaves produced *Cylindrosporium* type conidia on PDA for each common hosts. Morphological characteristics of these conidia well corresponded to the description of *C. pomi* (European pear, Plate15D; Japanese pear, Plate 15G: quince, Plate 15K: Chinese quince, Plate 15N).

The isolates from European pear, Japanese pear, quince, and Chinese quince could cause numerous, small, dark
spots on fruits of their respective original hosts, which were similar to spots on fruits of original host in the field (European pear, Plate 12F; Japanese pear, Plate 14C; quince, Plate 13E; Chinese quince, Plate 14F).

In the field experiments in 2000, ascospores discharging from diseased leaves of European pear were first trapped in late April, with peak discharge in mid-May, and decreasingly continued to be trapped until mid-July. The ascospore discharge pattern and degree of ascospore discharge well agreed with those in overwintered, fallen diseased leaves of apples. It was apparent that ascospores from diseased and overwintered European pear leaves serve as an important primary infection source for development of the fruit spot diseases on common hosts. The diseases on these common hosts, except apple, in Japan were first reported and newly named “Mycosphaerella fruit spot” (kokuten-byō in Japanese) for European pear and Japanese pear, “bloch” (kokuten-byō in Japanese) for quince, and “fruit spot” (kokuten-byō in Japanese) for Chinese quince.

10. The life cycle of the causal fungus
Based on the results of this study, the life cycle of the Brooks fruit spot fungus on apple in eastern side of Aomori (Nanbu district) is shown in Figure 11.

a. Dispersal of ascospore as a primary infection source
Pseudothecia mature on overwitered, fallen diseased fruits and leaves in late April or early May, from which the ascospores are discharged. Ascospore dispersal is very active from mid May to early June and then decreasingly continues until late July.

b. Cylindrosporium-type conidia as a secondary infection source
Ascospores that are discharged mainly during rain periods go over to fruits and leaves. The ascospores germinate to produce Cylindrosporium-type conidia from developing hyphae or sometimes directly from the spore itself on fruits and leaves. Cylindrosporium-type conidia serve as a secondary infection source. Hyphae from the ascospore penetrate into fruits and leaves through lenticels on fruit and through stomata on leaf.

c. Time of infection of fruits and leaves
Ascospores initiate leaf infection soon after the opening of the buds (late April), while fruit infection soon after petal fall (late May). Both infections then continue until late July. The disease symptoms on fruits are apparent from late June and on leaves from early August. In the field, Cylindrosporium-type conidia are produced both on fruit and leaf lesions. It is strongly suggested that Cylindrosporium-type conidia may serve as a secondary infection source, though it is not yet clearly shown by the experiment.

d. Overwintering of the fungus
On fallen diseased fruits and leaves in the field, spermogonia and protopseudothecia of the fungus are formed in early fall. Mature pseudothecia are formed on overwintered fruits and leaves in late April or early May, and ascospores are discharged from the pseudothecia.

Also infected and overwintered fruits, Cylindrosporium-type conidia are produced in May. It is highly possible that the conidia may serve as an infection source, though it is not yet experimentally proved. Besides apple, the fungus overwinters in fallen diseased leaves of European pear, Japanese pear, quince and Chinese quince, as well. The ascospores produced on and released from one of the common hosts may serve as an infection source for the other hosts in the near.

11. Disease control
Sterol demethylation inhibitor (DMI) and mancozeb mixtures, namely, difenoconazole-mancozeb, imibenconazole-mancozeb and myclobutanil-mancozeb, were evaluated for their controlling effect on Brooks fruit spot infection after spraying the chemicals and inoculated with the Cylindrosporium-type conidia onto the fruit. The results showed that the difenoconazole-mancozeb mixture was most effective preventing fruit infection for 15 days after spraying the chemical. The field experiments conducted in 2000-2002 on a large scale with a speed-sprayer demonstrated that difenoconazole-mancozeb mixture applied, twice on every 15 days from petal fall had promising effects in controlling the diseased. The chemical had been adopted in Spray Calendar in Aomori prefecture for the districts where the disease is a problem since 2003.
Figure 11. The life cycle of *Mycosphaerella pomi*
図版説明

図版1 リンゴ‘つがる’（Tsugaru’）果実における黒点病の病徵
A. B. 発病初期：黒点のある黒色の小点状病斑を生じる（A. 着色部では赤色点となる）
C. D. 成熟果：病斑はやや円形、暗赤色であるが、着色の劣る部分では濃緑色である

図版2 リンゴ各品種果実上の黒点病の病徵 - 1
A. B. 紅玉（Jonathan）
C. D. ジョナゴールド（Jonagold）
E. F. スターキングデリシャス（Starking Delicious）
G. H. 北斗（Hokuto）

図版3 リンゴ各品種果実上の黒点病の病徵 - 2
A. B. ふじ（Fuji）
C. D. 国光（Ralls Janet）
E. F. 陸奥（Mutsu）
G. H. 三林（Orin）

図版4 リンゴ葉の黒点病の病徵
A. B. ‘つがる’罹病葉：不正形、紫褐色病斑を生じる
C. D. E. ‘ふじ’罹病葉：不正形、紫褐色病斑を生じる

図版5 リンゴ果実および葉の黒点病病斑部の光学顕微鏡による観察
A. B. 果実の病斑部：果点（気孔）から菌糸が伸長し、菌糸上に Cylindrosporum 型分生子を生じている。（Bar: 50 µm）
C. D. 葉の紫褐色病斑部：気孔から菌糸が伸長し、菌糸上に Cylindrosporum 型分生子を生じている。（Bar: 50 µm）
E. F. 果実の病斑部：気孔直下の呼吸腔部に子座を形成し、気孔部に Cylindrosporum 型分生子を生じている。（Bar: 100 µm）
G. 果実の病斑部：気孔直下の呼吸腔部に形成された子座。（Bar: 10 µm）

図版6 リンゴ果実および葉の黒点病病斑部の組織解剖学的観察
A. 果実の病斑部：果実時に菌糸がみられ、表面、下皮および果肉部が褐変している。（Bar: 50 µm）
B. 越冬した罹病果実果実の病斑部に生じた子座。（Bar: 50 µm）
C. 越冬した罹病果実の病斑部に生じた子座に形成した Cylindrosporum 型分生子。（Bar: 10 µm）
D. E. 果実の病斑部：非真菌組織が褐変し、周囲の組織を敗死させる。（Bar: 50 µm）
F. 果実に生じた遊離子：果実5日後。（Bar: 10 µm）

図版7 リンゴ越冬罹病果実果実（ジョナゴールド）に生じた黒点病菌子のの核世代
A. ミイラ化した越冬罹病果実果実
B. 病斑部に形成的子座組織。（Bar: 100 µm）
C. 病斑部の断面。（Bar: 100 µm）
D. 成熟した子座の核。（Bar: 10 µm）
E. 子の核。（Bar: 10 µm）
F. 子の核。（Bar: 10 µm）
図版8 リンゴ越冬罹病落葉に生じた黒点菌隔子のう殻世代
A．越冬落葉上の病斑
B．病葉部の断面。（Bar：50 μm）
C．成熟した隔子のう殻。（Bar：50 μm）
D．成熟した隔子のう殻の断面。（Bar：10 μm）
E．子のう。（Bar：10 μm）
F．子のう隔子。（Bar：10 μm）

図版9 リンゴ落葉および貯蔵果実に生じた黒点菌隔子器世代および培養により生じた黒点菌Cylindrosporum壁分生子（単子のう胞子分離株No.22）
A．B．落葉の病斑上に生じた隔子器の断面。（Bar：10 μm）
C．落葉の病斑上に生じた隔子器から溢出した隔子。（Bar：10 μm）
D．貯蔵果実の病斑上に生じた隔子器。（Bar：50 μm）
E．貯蔵果実の病斑上に生じた隔子器から溢出した隔子。（Bar：10 μm）
F．PDA培養により生じたCylindrosporum壁分生子。（Bar：10 μm）
G．PDA上における分生子形成様式：フィアル型。（Bar：10 μm）

図版10 各種培地におけるリンゴ黒点菌の菌糸および人工接種によるリンゴ黒点病菌（B, C）
A．各種培地における単子の胞子分離株No.22の菌糸（20℃、暗黒で30日間培養）
B．子の胞子接種のリンゴ果実（ふじ）：やや凹んだ黒褐色病斑を生じた
C．子の胞子接種のリンゴ果実（ふじ）：不整形、紫褐色病斑を生じ、やがて黄変落葉した

図版11 リンゴ黒点菌 Cylindrosporum 壁分生子の胞子染料としての働き（A～F）および病原菌の侵入（G, H）
A．リンゴ圃場から採取した果実の表面において、子の胞子から生じた菌糸111に形成したCylindrosporum壁分生子（Bar：10 μm）
B．リンゴ圃場から採取した果実の表面において、子の胞子から生じた菌糸111に形成したCylindrosporum壁分生子。（Bar：10 μm）
D．E．果実に接種した子の胞子から直接または子の胞子から生じた菌糸111に形成したCylindrosporum壁分生子（D：接種24時間後，E：接種96時間後）。111は毛を示す。（Bar：10 μm）
F．子の胞子から生じたCylindrosporum壁分生子を接種したリンゴ果実（紅玉）：黒点病を生じた。（Bar：10 μm）
G．H．リンゴ果実および葉肉への病原菌の侵入：いずれも気孔から菌糸が侵入。（Bar：10 μm）

図版12 セイヨウナシ黒点病の病徵
A．B．自然発病果（A：ラ・フランス，B：ゼネラル・レクラーク）：病斑周囲が濃緑色を呈する黒褐色小点病斑を生じる。
C．D．自然発病果（C：ラ・フランス，D：ゼネラル・レクラーク）：不整形、紫褐色～黒褐色病斑を生じる。
E．越冬罹病果（ゼネラル・レクラーク）
F．接種（単子の胞子分離株No.28）により発病した果実（ゼネラル・レクラーク）。
G．接種（単子の胞子分離株No.28, No.30）により発病した葉（ラ・フランス）

図版13 マルメロ黒点病の病徵（在来種）
A．自然発病果（発病初期）：多数の黒褐色小点病斑を生じる。
B．自然発病果（成熟期）：やや凹んだ不整形黒褐色病斑を生じる。
C．自然発病葉：不整形、紫褐色～黒褐色の病斑（矢印）を生じる。
D．越冬罹病落葉
E．接種（単子の胞子分離株No.60）により発病した果実。
F．接種（単子の胞子分離株No.60, No.61）により発病した葉（病斑は矢印で示す）

図版14 ニホンナシ（幸水）およびカリンの黒点病の病徵
110—
A. 自然発病したニホンナシ果実：暗緑色小斑点（矢印）を生じる。
B. 越冬したニホンナシ病害葉。
C. 接種（単子のう胞子分離株 No.44）により発病したニホンナシ果実（病廃は矢印で示す）。
D. 自然発病したカリン果実：暗緑色小斑点（矢印）を生じる。
E. 越冬したカリン病害葉。
F. 接種（単子のう胞子分離株 No.70）により発病したカリン果実（病廃は矢印で示す）。

図版15 セイヨウナシ、ニホンナシ、マルメロおよびカリンの越冬病害葉上に生じた黒点病菌 Mycosphaerella poni の偽子のう胞子世代および分離株の Cylindrosporum 型分生子
A ～ D. セイヨウナシ菌糸子のう胞子 A, 子のう B, 子のう胞子 C および Cylindrosporum 型分生子（分離株 No.28, D）。（Bar：10 μm）
E ～ G. ニホンナシ菌糸子のう胞子 E, 子のう F および Cylindrosporum 型分生子（分離株 No.44, G）。（Bar：10 μm）
H ～ K. マルメロ菌糸子のう胞子 H, 子のう I, 子のう胞子 J および Cylindrosporum 型分生子（分離株 No.60, K）。（Bar：10 μm）
L ～ N. カリン菌糸子のう胞子 L, 子のう M および Cylindrosporum 型分生子（分離株 No.70, N）。（Bar：10 μm）
図版 1（Plate 1）
図版 2 (Plate 2)
図版 3 (Plate 3)
図版 4（Plate 4）
図版 6（Plate 6）
図版 7 (Plate 7)
図版 8 (Plate 8)
図版 9 (Plate 9)
図版 10 (Plate 10)

PDA Malt extract agar Apple leaves extract agar
Czapek’s agar Richards’ agar Hopkins’ agar YpSs agar

B C
図版 11（Plate 11）
図版 12 (Plate 12)
図版 13（Plate 13）
図版 14 (Plate 14)
図版 15 (Plate 15)